
Interplay Between Requirements, Software Architecture, and Hardware Constraints
in the Development of a Home Control User Interface

Michael Sørensen Loft, Søren Snehøj Nielsen, Kim Nørskov, Jens Bæk Jørgensen
Mjølner Informatics A/S, Aarhus, Denmark

{mls, ssn, kno, jbj}@mjolner.dk

Abstract—We have developed a new graphical user interface
for a home control device for a large industrial customer. In
this industrial case study, we first present our approaches to
requirements engineering and to software architecture; we also
describe the given hardware platform. Then we make two
contributions. Our first contribution is to provide a specific
example of a real-world project in which a Twin Peaks-
compliant approach to software development has been used,
and to describe and discuss three examples of interplay between
requirements and software architecture decisions. Our second
contribution is to propose the hardware platform as a third
Twin Peaks element that must be given attention in projects
such as the one described in this paper. Specifically, we discuss
how the presence of severe hardware constraints exacerbates
making trade-offs between requirements and architecture.

I. INTRODUCTION

We, the authors of this paper, work for the Danish soft-
ware company Mjølner Informatics A/S (Mjølner), which
develops custom-made software solutions for Danish and
international customers, both in the private and the public
sector. Mjølner has expertise in development of a broad
range of system types. For an industrial customer, we have
recently developed a new graphical user interface for a home
control device.

Our customer is a large company, which sells its products
all over the world, has more than 10,000 employees and a
yearly turnover of billions of euros. The product that we
are contributing to is a strategic product, which is seen as
very important to strengthen our customer’s market position
in the near future. The product is a home control that can
be used to control various things in houses and apartments.
For confidentiality reasons, we do not have permission to
mention the name of our customer or to describe the product
in detail.

The purpose of the project was to analyze the needs
of the users, design a new graphical user interface (UI)
that was aligned with the users’ needs, and implement the
new UI. The customer’s vision for the UI was ”to look
and feel as good as the iPhone”. This meant a UI with
consistent interaction design, beautiful graphics, smooth
scrolling, responsive touch interaction and anti-aliased text.
Figure 1 sketches the main screen of the UI (anonymized).

In the UI, the user can browse a coverflow containing
various products that can be controlled, e.g., as it is known

Figure 1. Coverflow

from presentation of music albums in iTunes. Additionally,
a wide range of advanced features such as automatic pro-
grams to operate products, and grouping and arrangement
of products to fit the user’s home, are supported. The new
graphical UI has approximately 200 different screens.

The project was finished in the spring 2012 and had been
running for approximately two years. The project team size
varied between 5 and 10 developers, and the total time
consumption has been 18,000 hours. The hours are roughly
distributed with 50% used for implementation, and 50% used
for other activities including analysis and design. 100,000
lines of code have been written. In the first year, focus was
on requirements elicitation and user experience in the form
of analysis and design of various proposals for the style
of the UI. In parallel, certain overall architectural decisions
were made, such as the choice of a specific graphical library,
developed in-house by Mjølner, to be used.

Requirements can be classified in the sense of [1] and
the activities carried out the first year identified the goal-
level requirements and yielded a reasonable stable require-
ments specification that also captured the domain-level and
the product-level requirements. However, the design-level
requirements have been volatile (which is quite natural). In
the rest of this paper, when we say ”requirement”, by default
we mean design-level requirement.

In the last year of the project, focus has been on imple-
mentation and realization of the UI. We have used an iter-
ative, Scrum-like approach to development, with iterations
of length approximately 4-5 weeks, and we have detailed,
expanded, clarified, and prioritized requirements continually.
There has been a very close coordination between the
project’s user experience designer - in this context, this is
the same as the project’s requirements engineer and will

978-1-4673-4485-2/12/$31.00 c© 2012 IEEE TwinPeaks 2012, Chicago, Illinois, USA1

be referred to as such in this paper - and the project’s
architect. The choices made by the former have continually
been discussed with and validated by the latter, and vice
versa.

While the overall hardware specifications for the new
home control were known from the beginning, the hardware
platform was under development by another team at our
customer and samples on which we could run the software
were not available until the last months of the project’s
development.

Nusebeih’s Twin Peaks approach [2] consists of high-level
recommendations to software engineering in which require-
ments and software architecture are developed separately
but concurrently. In the literature we have not seen many
applications of Twin Peaks in practice. Therefore our first
contribution is to provide a specific case study, in which
Twin Peaks is discussed in relation to a real-world project.

In the development of the home control UI, we have
experienced how constraints made by the hardware platform
had substantial impact on this relationship, causing archi-
tectural challenges late in the project and thereby under-
lining the importance of a mutual understanding between
the requirements and architecture domains. Therefore our
second contribution is to explicitly propose the hardware
platform as a third Twin Peaks element that must be given
attention in projects such as the one described in this paper.
We describe how requirements, architecture and hardware
constraints have been dealt with simultaneously, and how
the choices made about one of these have influenced the
others.

II. REQUIREMENTS ENGINEERING

In eliciting requirements, a user experience (UX) ap-
proach was used. A primary goal was to gather information
about the product’s users and their ways of using the product
(our customer has had a similar product on the market for
years). Therefore, we started by conducting field studies and
focus groups in two of the product’s main market countries.
We analyzed the domain, the competitors and conducted user
tests of the existing product. All the research information
gathered in the user research activities was scrutinized,
discussed with the customer and consolidated.

Among the most important results from this process was
the definition of personas that represent key user profiles,
whose wishes should have proper priority in the design of
the new UI. In this process, we also discussed and identified
the goal-level requirements. Along with the personas, a list
of the main usage scenarios for the home control was created
in order to focus the subsequently developed wireframes and
prototypes on the main usage and user needs.

Some of the wireframes were further elaborated into
graphical versions. This being a high-end consumer product
to be placed in people’s homes, the graphical design and
overall appearance was of very high importance. Different

graphical styles were explored, still without knowing exactly
what the limitations of the hardware platform would be.

It was at this point that the first discussions about the
interplay between requirements engineering and software
architecture started, the obvious goal being that the most
evident software and hardware limitations could be taken
into account before proceeding with and ultimately present-
ing for the customer interactions styles and graphical layouts
that would be impossible to realize.

During the entire project, the requirements engineer had
his desk in the same room as the software architect and the
developers. This arrangement made it straightforward con-
tinually and on a daily basis to clarify mutual dependencies
between architecture and requirements/user experience.

The UX approach was supplemented by a more traditional
requirements process, where a comprehensive requirement
specification was written - this specification focused on
domain-level and product-level requirements, and, unlike the
UX deliveries, did not say anything about the design of the
UI, only its functionalities; see [3] for more details.

III. SOFTWARE ARCHITECTURE

There were three major characteristics of the project that
greatly influenced the software architecture.

First the software development was done by two physi-
cally separated teams, with our team being responsible for
the graphical UI, the frontend, and another team, consisting
of software developers from the customer, responsible for
the rest of the system, referred to as the backend in this
article. This called for a very clear separation of these two
components in order to facilitate parallel development. This
was achieved by defining a backend interface which was
essentially a set of structs communicated between the com-
ponents asynchronously. Through this interface, the frontend
can query product information and various configuration
data for displaying in the UI. Similarly, the operation and
management of products in the home control is dispatched
to the backend through this interface.

Second, we knew the hardware platform was not going
to be available until late in the project, necessitating a
hardware abstraction layer and the implementation of a PC-
based simulator. We were probably going to implement the
simulator regardless, since our experience shows such a
simulator proves a valuable tool in many aspects of the
product cycle including test, rapid prototyping of features,
input to the user manual and training of support personnel.
But since the backend implementation done by the other
team was target platform only, we had to simulate parts of
the backend software as well. This provided the additional
benefits of easy loading of various test data, easier debugging
of the messages flowing across the backend interface, but
perhaps most importantly it reduced the dependency on
the development schedule of the other team. Our own
development schedule was already to some extent dictated

2

by the requirements engineering process, which did not
necessarily align with the optimal schedule for implementing
the backend.

Last, we wanted a UI architecture where the logic, view
and data model were separated and chose a Model-View-
Presenter (MVP) approach inspired by Presenter First [4].

Frontend (UI)

Backend

Backend interface

Model ViewPresenter

- Events flow from the Model and View to the

Presenter.

- The Presenter processes the events and

manipulate the View and Model.

- The Model is updated with events from the

backend and sends requests to the backend.

Figure 2. Software Architecture—Model View Presenter

The architecture is illustrated in Figure2. Each separate
area of functionality in the UI would be handled by a
Presenter-View pair, thereby partitioning the code according
to the various usage scenarios available in the home control.
Only one Presenter-View pair would be active at a time,
depending on what the user was currently doing.

The data model would act as a cache for certain backend
information needed across all presenter-view pairs as well as
filtering backend interface messages and dispatching relevant
events to the active Presenter. The Presenter would then in
turn populate the View according to the current Presenter
state. Likewise, user input events such as touch or swipes
would be processed by the presenter, which would then
dispatch the appropriate commands to the backend. We
assumed that by doing this, we could implement and test the
Presenter, later create the final UI in the View and in this
way implement Presenters for Views that were still in the
specification state by the requirements engineer. However, as
will be described later in this article, several obstacles arose
during the project which turned out to impede this approach
in practice.

IV. HARDWARE PLATFORM

We were developing a consumer product for the mass
market to be produced in large quantities. Therefore, the
production price per unit was crucial and it was important
that the hardware costs was low. Consequently, we had to
accept that the hardware platform for our project would be
low-end (eventhough the user experience should be high-
end).

To give an idea of the challenges of the hardware platform,
it can be compared to an iPhone 3GS (released in 2009).
We were tasked with implementing high-end graphics on
a processor running at less than 1/12th the speed and using

around 1/1000th the memory of an iPhone 3GS. Also we had
no dedicated graphics processor so the microcontroller itself
needed to handle the display updates. The microprocessor,
display and connected memory units all shared the same
data bus. The target frame rate was 21 updates per second,
meaning that we had less than 50 milliseconds to both
render the screen and flush the frame buffer to the display.
The theoretical throughput of the bus was only slightly
higher than that, meaning it was important to ensure that
no unnecessary pixel transfers took place.

Equally challenging was the amount of RAM available
for holding the widgets, state information and various other
data structures. This placed a severe restriction on architec-
tural maneuverability since memory usage was a permanent
concern.

V. INTRODUCTION TO THE INTERPLAY EXAMPLES

With the requirements engineering, software architecture
and hardware platform thus presented as background infor-
mation, we proceed giving examples of their interplay in
the next three sections. The examples have been specifically
chosen to illustrate three different variations of the Twin
Peaks relationship, where the first example resulted in major
architectural changes, the second example yielded partially
unsatisfied requirements and the third example resulted in a
redesign. In all three examples, hardware constraints played
a substantial role and limited the options available for
ensuring coherence between requirements and architecture.

This is illustrated in Figure 3, which is an augmented
Twin Peaks model that includes the hardware constraints
as a third element. The hardware element is drawn as a
box, instead of a peak, to hint that hardware properties are
given, beyond the control of the software team. In contrast
to requirements and software architecture, hardware is not
elaborated and expanded during the software project in
consideration in this paper (even though the software team’s
access to knowledge about and understanding of hardware
properties may expand).

The annotated iterations of Figure 3 represent the itera-
tions of Example 1 in the following section. Similar figures
could be drawn to illustrate Examples 2 and 3, but space
does not allow us to do so.

VI. INTERPLAY EXAMPLE 1: PRESENTATION OF
PRODUCTS IN THE UI ACCOMMODATED BY A NEW LIST

DESIGN IN THE SW ARCHITECTURE

We will use the implementation of lists as an example of
how the architecture changed during iterative development.

We knew that the UI would have different types of lists.
An example was a list used, when the user wanted to rename
a product. The list should show all available products as list
elements and let the user select one of them. This knowledge
is show as (A) in Figure 3, which marks the beginning

3

Requirements Architecture Hardware

(C) +200 list

elements

(A) A general need for lists in the UI
(B) MVP

(F) Playful UX - lists

must scroll

(G) Databinding

Implementation

dependence

Independent Dependent

Level

of

detail

Detailed

General

(D) Low

memory (E) Can we use paging?

(H) Addition list details

(I) No changes

Figure 3. Twin Peaks and Hardware—and Interplay Example 1 illustrated

of the first iteration from requirements considerations to
architecture considerations

At point (B), our initial architecture was based on the
Presenter First variant of MVP, where the Model and View
are isolated from each other and all UI events are processed
by the Presenter. Our approach was to let the Presenter
iterate over the products in the Model and for each product
invoke a method on the View to add a list element to the
View. The View had a virtual screen size much larger than
the actual screen size and when the user scrolled the screen,
the actual screen was updated to show a different part of the
virtual screen. The Presenter was informed, when the user
made a selection and an element index was used to identify
the selected element.

In the second iteration (starting at point C), the list design
became more detailed. The UI list was required to hold up
to 200 products, since the home control was not only to be
sold to private homes but also to hotels, schools and other
larger institutions with many products. The user could scroll
and use a swipe gesture to navigate to the product to be
selected, to have a seamless interaction and to follow the de
facto interaction standard. Our initial MVP implementation
had no limitation on the number of list elements and thus
supported the new UI design.

At point (D), it became obvious that the hardware con-
straints would force us to change direction. Following the
architecture, we would iterate over the model and create 200
list elements, but we did not have enough RAM to allocate
all the list elements.

One solution would be to keep the MVP architecture
unchanged and add a paging mechanism, where only a
limited number of list elements were shown at the same time
(E). This would give a working product, but it would be less

attractive, not meeting the goal-level requirement of creating
a playful user experience with a seamless flow, because the
user could no longer just swipe to the desired product.

This observation marked the starting point of the third
iteration (F). The solution chosen was to modify the MVP
architecture to include databinding for lists (G). The Presen-
ter would provide a data collection to the View and the List
widget in the View would bind to the data collection. The
only list elements allocated was the number of elements,
which could fit on a single screen. When the user scrolled
or swiped the list, the list elements were reused by repo-
sitioning them, e.g. by taking the top element and placing
it at the bottom of the list if the user scrolled upwards. It
was now the responsibility of the View to modify the list
elements to make them display the correct elements in the
data collection.

In the fourth iteration (H), list design was continued with
different colors for odd and even numbered list elements to
make it visually less flat; it also gave a nice effect showing
the movement when scrolling through a list. An icon for each
list element was also included to indicate the type of product.
The software architecture remained unchanged by this (I).
Based on the data collection, the View would determine if
a list element should be even or odd, determine the product
type and modify the list elements correspondingly.

These iterations illustrate how a central part of the soft-
ware architecture changed through iterations of the UI design
and under the constraints given by the hardware. The initial
MVP Presenter first architecture was modified to allow data
binding between the View and a data collection from the
model, an approach which gave us the look-and-feel required
and at the same time minimized the memory usage to a level
where it was possible to implement on the hardware.

4

VII. INTERPLAY EXAMPLE 2: INTERLEAVED SCENARIOS
LIMITED BY THE SW ARCHITECTURE

As mentioned earlier, we had a Presenter-View pair for
each logical grouping of functionality in the system. Because
they each represented distinct user scenarios, there were not
initially any reasons for the architecture to support advanced
transitioning between Presenters such as seamlessly jumping
to the middle of another scenario and back again. We did,
however, keep all Presenters and Views loaded in RAM
at all times should such a need arise. This consumed a
lot of memory since the Presenters and Views contained a
substantial amount of information, most notably the layout
and widgets needed by the scenario.

As the implementation progressed, it became clear that
we used too much memory. At this point, the design-level
requirements were not finalized, in particular for some of the
most complex scenarios. But there was no concrete evidence
that advanced transitioning was going to be needed, so
reworking the memory allocations such that only the active
Presenter-View pair was loaded in RAM at any particular
time was an obvious choice, especially since this would
free a substantial amount of memory. In addition, even
though this represented a somewhat large change in terms of
architecture it could be implemented relatively easily, so we
went ahead with this. As a consequence, when navigating
away from a presenter, all its state information was lost so
when the presenter was later reactivated, it would be in its
initial default state.

When specifying the remaining scenarios, it became ap-
parent that sometimes it was desirable to be able to jump
between otherwise unrelated scenarios. Most prominently
at the occurrence of errors or other exceptions causing a
secondary scenario to be activated, after which the original
scenario should be resumed. This would require the ability to
switch to another presenter-view pair and afterwards restore
the complete state of the previous screen (the previous
Presenter-View pair). There were also examples where the
initial state of a Presenter-View pair would vary situationally,
and this was not supported by the architecture.

Faced with these requirements, it was obvious that some
of the assumptions on which the architecture had been based
were no longer true. Reverting the architecture to keep all
state information in RAM would have helped alleviating
these problems, but that was no longer an option, as we were
already approaching the limit of RAM usage without it. In
fact, this would have to be solved without any increase at all
in RAM usage, which was not a trivial problem. In essence,
we would need to rethink our core definitions of Presenters
and Views, requiring substantial amounts of rework across
the code base. It was simply too late in the project for that
kind of change.

With that realization, the requirements engineer and the
architect collaborated on reaching a practical compromise.

Some of the offending requirements were not essential for
the user experience of the product and could be removed
or tweaked to fit the architecture. Conversely, some re-
quirements were indeed important and would degrade the
quality of the product if omitted. Some of these could
be implemented by applying local changes (hacks) to the
architecture and in those cases we chose to do so. However,
there were also requirements which ideally should have been
implemented but ended up being rejected due to limitations
of the architecture and hardware platform.

VIII. INTERPLAY EXAMPLE 3: SMOOTH TRANSITIONS
IN THE UI REDESIGNED WITH RESPECT TO HARDWARE

LIMITATIONS

We will now describe an example of how the hardware
limitations influenced the design of the product.

For most of the project time we did not have any hard-
ware. This meant, that we could not test the performance of
different solutions, so instead we did a performance study
on similar hardware and calculated how much of the screen
we would be able to update and still have a proper refresh
rate. We searched the Internet for guidelines for the update
frequency of the screen and concluded that we needed to
draw animations at a minimum of 21 frames per second
to make them smooth. We wanted to use alpha blending
for parts of the UI, because that could give a fading effect
for instance in the coverflow and anti-aliased edges on icons
and text, which would improve the look of the home control.
Alpha blending uses more of the databus bandwidth and to
take this into account, we created a spreadsheet that allowed
us to calculate how much we could blend and move at the
same time.

As described earlier, the main user interface is a coverflow
where we show a number of product icons at the same time
and highlight the one in the middle of the screen to show
that this is the product, with which the user interacts.

The requirements engineer had suggested a spotlight
effect, where an alpha blended gradient in both directions
was used to create the spotlight. We used the spreadsheet
calculations to get hardware constraints into consideration
early, and the calculations showed that we would not be
able to alpha blend on such a large area and still have
an acceptable framerate and thus the swipe effect in the
coverflow would stutter.

Instead, the software architect suggested an alternative
solution. If only a gradient in one direction (vertical) was
used and the UI was designed to scroll in the other direction
(horizontal), the blending of background and icons could
be pre-rendered and the only thing we needed to do in
the product was to fade out the icons when they moved
away from the center of the screen. The requirements
engineer used the feedback from the architect and now had
to find another way of living up to the goals and keeping a
consistent interaction design. A few different solutions were

5

considered to get the right effect at an acceptable frame
rate and a good looking solution, which did not change the
mental model of the coverflow’s behavior and interaction.
It was later implemented with the swipe effect running
smoothly. The coverflow is an essential part of the home
control, so we needed both to get the maximum effect out
of the hardware, and be sure that it would work on the final
hardware.

IX. DISCUSSION OF THREE MAIN TWIN PEAKS ISSUES

Below we discuss three management concerns [5] that are
said to be addressed well by the Twin Peaks approach [2].

”I’ll know It When I See It”: it is recognized that effec-
tive requirements engineering often demands that partially
developed systems or prototypes are presented for various
stakeholders during a project. We have to a high degree
taken advantage of that, both in the initial UX approach with
wireframes and graphical mockups and through development
of the UI, where the simulator was used for presentations.
We have been running an iterative project with frequent
demonstrations and frequent releases to the customer. Had
requirements and UI design been made without considera-
tion of software architecture and hardware simultaneously,
there would have been a risk that stakeholders would have
experienced a number of disappointments, because the UI
vision potentially would have been quite different from what
was possible to implement given the hardware constraints.
Conversely a fixed software architecture made with the
given hardware constraints as a prime concern, but before
before requirements and UI design, might have resulted in
a solution that was less attractive and less user-friendly.

”Commercial off-the-shelf software”: has not been used
to build the new home control UI. Instead we have used a
general-purpose graphical library, developed previously by
our company, because it was seen as a suitable component
to be applied in this context. The architectural decision
to use this library was taken very early in the project,
with only high-level requirements known, and this decision
entailed a project risk, because it is an example of an
architectural property that would have been very difficult, if
not impossible, to change late in the project. In accordance
with our expectation, it turned out that there was a good
correspondence between what was needed in the UI, and
what was made available by our graphical library.

”Rapid Change”: with our development approach, we
have been in a position, where it has been possible to
deal with rapid change, as we have seen in the interplay
examples. It would not have been possible with a non-
iterative, waterfall-like approach, because we don’t think that
the many stakeholders’ various viewpoints could have been
captured and resulting design-level requirements specified
before a software architecture was developed, and before
implementation work began.

X. CONCLUSION

In this paper, we have considered an industrial project
that has applied a development approach which is compliant
with Twin Peaks. We have illustrated this in three interplay
examples.

To sum up, in example 1, a number of iterations through
requirements considerations, software architecture consid-
erations, and hardware considerations resulted in a more
detailed specification of the requirements, accommodated by
extensive changes to the software architecture, and respect-
ing the given hardware constraints. The original requirement
was satisfied in full; it was an important requirement, and the
solution demanded a major rewrite of many lines of code.
In example 2, the requirements engineer had to accept that,
because of limitations dictated by the software architecture
and the hardware, it would not be feasible to satisfy the
original requirement fully; compromises had to be made,
and were made. Ultimately, this is an example of the risk
of making architectural choices early, which ended up caus-
ing both partially unsatisfied requirements and deviations
from the architecture. We believe that such situations are
unavoidable in practice but it underlines the necessity of
close collaboration between the requirements engineer and
the architect. It also illustrates the benefits of these parties
being able to understand the concepts and problem domains
of the other to solve or even avoid these situations. In
example 3, the requirements engineers’ basic requirement
got fulfilled, but in a different way than he had imagined
from the beginning, and with no changes to the software
architecture, but with a detailed analysis of the possibilities,
given the hardware constraints.

We believe that the three interplay examples are of general
interest to serve as a specific instance of Twin Peaks applied
in practice. Moreover we think that the inclusion of hardware
as a third Twin Peaks element will be relevant in many other
projects, which are similar to ours.

REFERENCES

[1] S. Lauesen, Software Requirements - Styles and Techniques.
Addison Wesley, 2004.

[2] B. Nuseibeh, “Weaving together requirements and architec-
tures,” Computer, pp. 115–117, Mar. 2001.

[3] J. B. Jørgensen, K. Nørskov, and N. M. Rubin, “Requirements
engineering and stakeholder management in the development
of a consumer product for a large industrial customer,” in
RE’11, 2011.

[4] M. Alles et al., “Presenter first: Organizing complex GUI
applications for test-driven development,” in AGILE 2006.
IEEE Computer Society, 2006, pp. 276–288.

[5] B. Boehm, “Requirements that handle IKIWISI, COTS, and
rapid change,” Computer, pp. 99–102, Jul. 2000.

6

