
Requirements Problems in the Development of a New

User Interface for Healthcare Equipment

Maria Holmegaard, Jens Bæk Jørgensen, Michael Sørensen Loft, Martin Stig Stissing

Mjølner Informatics A/S

Aarhus, Denmark

{mho,jbj,mls,mss}@mjolner.dk

Abstract—In August 2013, our company started work for an

industrial customer. First, we developed a prototype and

conducted field studies in small-scale projects. This was successful

and the basis for a larger project about development of a new user

interface for healthcare equipment. A main aim for us was to use

this project as starting point for establishing a strategic, long-term

relationship with this customer. However, we were not successful.

In November 2014, our customer chose to take over the

development themselves. We were too expensive, used too many

hours and were not able to provide useful estimates, they said. In

this paper, we describe the project and analyze causes to our

customer’s decision. We also look at possible alternatives to the

actions we took in the project and discuss whether we could have

done better. A root cause to our customer’s dissatisfaction is

related to requirements and handling of requirements.

Index Terms—Pragmatic requirements engineering;

collaboration with stakeholders; requirements engineering for

user experience including ethnography, design and usability.

I. INTRODUCTION

 Our company, Mjølner Informatics, develop custom-made

software solutions for Danish and international customers. We

are around 80 employees and have expertise in development of

a broad range of system types. Our services span all software

engineering activities, including domain and user research,

requirements engineering, software architecture, interaction

design, graphical design, implementation and testing.

In this paper, we consider a recent project for a particular

industrial customer with headquarters in Northern Europe. One

of our main aims with the project was to use it as starting point

for establishing a strategic, long-term relationship with this

customer. However, the outcome was not as we had hoped. Our

customer were not satisfied. The main reason is that we were

seen as being too expensive because we used more hours than

the customer found reasonable. The project frame was a time and

material agreement, and was based on an estimate that was made

prior to the development project and before the agreement was

signed.

In the agreement about the development project, it was said

that “During the project, the assumptions for the project proposal

may change and this may result in changes to the budget”. This

quote reflects that there were a number of known uncertainties

at the time when the project was initiated.

When our current engagement with our customer ended, in

November 2014, we had used approximately three times the

number of hours that was originally estimated for the

development project. Based on this information alone, it is not

surprising that our customer were not entirely satisfied.

However, there are reasons to this outcome. Some of the

reasons are general project management issues including that a

number of necessary deliveries from our customer were delayed

and that the timeframe for the development project doubled.

Initially, it was agreed to be March – June 2014, but the actual

timeframe was March – November 2014. Other reasons are

clearly related to requirements and requirements handling.

Examples are that the product increased in size – around twice

as much functionality than originally agreed - and that

requirements specifications for a number of components with

which the product should coexist and communicate were either

missing or incomplete.

Lauesen [5] classifies requirements in goal-level, domain-

level, product-level, and design-level requirements. We have

encountered problems at all four levels, as we will discuss.

Our goal with this paper is to describe and analyze the project

with focus on the requirements related problems in order to get

a better understanding that we can benefit from in future projects

with similar characteristics. For confidentiality reasons, we keep

the customer anonymous.

The product under discussion is a graphical user interface for

healthcare equipment, used at hospitals and nursing homes.

First, we developed a prototype and conducted field studies, with

a Mjølner project team which was quite small; we will describe

the details later. In the subsequent development of the full

product, Mjølner’s project team was organized with a project

manager, a software architect, a user experience specialist

(requirements engineer), a digital designer and four developers;

the authors of this paper together represent all roles, except the

digital designer.

The structure of this paper is: Section II presents the project

and its timeline. In Section III, we outline the product itself. In

Section IV, we describe the requirements specification. In the

central Section V, we list and discuss a number of requirements

related problems that we encountered during the project and we

discuss alternative courses of actions that we could have taken.

Section VI addresses how the requirements problems

contributed to increased estimates. The conclusions are drawn in

Section VII, which also includes a discussion of related work.

978-1-4673-6904-6/15/$31.00 c© 2015 IEEE RE 2015, Ottawa, ON, Canada
Industry Paper

52

315

II. THE PROJECT AND ITS TIMELINE

The project was a sequence with three major activities,

which we will describe below.

A. Initial Prototype and First Version of Design-Level

Requirements, Based on Given Product-Level

Requirements

In August 2013, we started developing a prototype for our

customer. The overall goal of the prototype was to use it as an

instrument to maintain or even strengthen the customer's leading

position in the market. The prototype was a tangible indication

to the market showing that soon the customer would launch an

exciting and innovative new product. Thus, the overall goal-

level requirement (for both the prototype and the full product)

was, as we saw it, to achieve a strengthened market position for

our customer.

The prototype was presented as a showcase for our

customer’s customers (our customer’s equipment is built into

equipment manufactured by other companies) to find out the

demands from the market and as a way of testing the new

concept and design of the user interface. The prototype was

demonstrated at a major international exhibition in November

2013 and was successful. Our customer’s customers found the

prototype very interesting and promising.

The customer orally delivered the product-level

requirements for the prototype to Mjølner. The requirements

were based on our customer’s own experiences and collected

from their other products. They were to a large extent gathered

from local sales people, who had been in contact with customers

in a number of different countries.

Through the prototype, we provided the first version of the

design-level requirements in the form of the interaction design

[9] and graphical design of the user interface.

The prototyping activity was rather small for us. From our

side, it involved only the user experience specialist and two

developers. It used well-known hardware and communication

protocols. The customer were very satisfied with our work.

B. Validation and Elicitation at Hospitals and Nursing Homes,

and Alignment of Design-Level and Domain-Level

Requirements

As a way of validating the requirements implemented in the

prototype and doing further requirements elicitation, we visited

a hospital and a nursing home in the customer’s local market.

Here, we did elicitation through field studies, where we observed

healthcare personnel doing their daily work; we also conducted

some interviews. Moreover, we validated the prototype by

carrying out a number of small tests.

We acquired a larger understanding of the domain. We got

insight into the different use scenarios that the new product was

going to be a part of. The healthcare personnel, who would be

future end users of the product, were met in their work

environment to get a more realistic experience of the use

scenarios. We observed their varying work tasks, which were

characterized by routines with a high level of efficiency.

After the observations and interviews, we conducted a

validation of the current prototype in order to improve the design

of the user interface, before it was determined as the final

concept the new product should be based on.

To let users test the prototype in relation to the actual use

scenarios gave valuable information that could be taken into

account in the development of the product. Furthermore, it was

a crucial element in our customer’s sales communication that the

concept actually was tested in, and optimized for, real use

situations based on input from tests by users.

With the results from the field studies and interviews, we

were able to extract concrete domain-level, which later in the

process were used to enrich the design-level requirements for the

new product. In essence, we aligned design-level requirements

with domain-level requirements.

Again, our customer were fully satisfied with our work on

this activity, which had the user experience specialist as the only

Mjølner employee involved.

C. Development of a Full Product and Continued Work with

Product-Level and Design-Level Requirements

The agreement to develop a full product was signed in

January 2014 and was based on a project proposal that was

written just before Christmas 2013. The proposal was at a very

overall level and left many details to be decided and specified

later. The project proposal assumed that the product should be

developed by improving and extending the latest prototype and

use known and existing communication protocols that had

already been used by us together with the prototype.

The product would be developed by Mjølner and the

customer in collaboration.

When we started the development of the full product, in

March 2014, we had a kick-off meeting with our customer.

Obviously, a main purpose was to meet the people from the

customer that we were going to cooperate with. We met the

newly appointed head of software development, the project

manager, a protocol developer and an accessories developer.

In addition to these people, key stakeholders from the

customer were the head of development (not to be confused with

the head of software development; these two are different

people), the head of sales and two sales people. None of these

participated in the kick-off meeting.

It was the head of development, who had signed the contract

about the full product development, and it was the head of sales

who had signed the contract about what was called design (and

which is more properly termed “requirements engineering and

design”). This meant that our project from early 2014 was

regulated by two separate contracts.

316

Fig. 1. Timeline.

A hard deadline for the project was mid November 2014, for

this year’s main international exhibition. Development and

continuation of interaction design and graphical design took

place throughout most of the project. The specification of the

user interface was done in collaboration between the sales

department at our customer and the user experience specialist

from Mjølner. We experienced that the scope increased several

times, often because the sales people had new input from the

global market that they wanted us to incorporate.

During the development of the full product, we sent a short

status report to the customer each week. The status report

contained information about how many hours we had used until

now and estimates for remaining work, when possible. The

report explicitly distinguished between, on one hand, hours used

for requirements and design and, on the other hand, hours used

for development.

Our customer became increasingly dissatisfied with us. In

early November, immediately before the exhibition, the product

was almost complete, and it was in this way ready to be

presented at the exhibition. It would have been possible for us to

complete the development shortly after the exhibition, but the

customer chose to take over the remaining development

themselves.

Figure 1 gives an overview of the project’s timeline; Protocol

2 and Protocol 3 are mentioned in the figure and will be

discussed in Section V.E.

We encountered a number of problems in the development

of the full product. We will discuss requirements-related causes

to these problems in Section V. However, in the next two

sections, we will provide some more background by describing

the product itself and the requirements specification in more

detail.

III. THE PRODUCT

The product unifies, encompasses and replaces a collection

of the customer's existing control panels and is the first to have

a graphical user and touch interface.

The product is adaptable in the sense that it accommodates

the multitude of variations of setups of equipment and

accessories. A piece of equipment might or might not have

motors adjusting the position of various constituents, sensors to

monitor certain situations etc.; the product will adapt to these

different setups.

Variations of the product to suit specific customers of our

customer are a significant part of the overall product strategy.

This entails skinning the graphical user interface and supporting

additional customer specific accessories.

The product is a piece of software suited for custom

embedded hardware. The hardware is to be developed by the

customer. The product is to be sold in many copies, so there is a

strong focus on keeping the unit cost low. This implies that the

product is based on hardware with limited processing power and

memory.

The programming language used is C/C++ as this is suitable

for both the graphical framework used and for integrating with

the already existing libraries for communicating with our

customer’s equipment (and also our customer’s customers’

equipment).

A. User Interface

The graphical user interface displays all relevant information

in an intuitive, consistent and visually appealing way (we are

aware that the terms used in this description are vague and

subject to different interpretations). It removes the demand for

any other user interface, and in this way simplifies the

interactions to be made with the equipment. The user interface

is based on touch screen interactions.

Different users are going to utilize the interface in different

ways. Patients and relatives, who will only have access to and

use a small amount of the capabilities of the system; nurses, who

will unlock additional features of the interface and set up rules

and monitor the well-being of the patient; and service

technicians who will unlock features for setting up and

monitoring the general state of the medical equipment.

The user interface is divided into different modes or screens

that have been designed to fit the workflows of that particular

user group. The screens are visually clear and concise, making

interactions easy in the environments where the user interface is

placed.

317

Fig. 2. Screen from the user interface (anonymized and simplified).

The user interface will adjust itself to the capabilities of the

equipment. If a particular accessory is present, controls for

interacting with it will automatically be available in the user

interface.

The product will be used in a global setting and therefore the

user interface should be international. This is particularly

demanding for the textual design of the interface. In addition, it

implies that regional settings, such as time, date and units should

be adjustable.

Fig. 2. shows an example of a screen from the user interface,

anonymized and simplified for the purpose of this paper.

B. Product Environment

In addition to displaying the graphical user interface the

product also communicates with external equipment, such as

motors, lights and sensors via a proprietary protocol, and

handling interactions with physical buttons, light sensors, RFID

chip, buzzers, etc.

As stated, the product is a graphical front end to an entire

system of hospital equipment, actuators, motors, sensors and

controls as illustrated in Fig. 3. , which shows our product in its

technical environment.

Each accessory is a product and the controller, which

controls the equipment movements, is also itself a product. The

accessories and the movement controller can have a number of

sensors attached and are responsible for different parts of the

overall system functionality.

Examples of the accessories could be wet sensors, for

detecting when a bed is wet, indicating that a change of sheets is

required, or a presence sensor which monitors if a patient enters

or exits the bed, being of great importance when dealing with

patients suffering from, e.g. dementia.

Some accessories can be configured to react to each other.

As example, one accessory can detect when a patient is present

in the bed and another accessory provides light under the bed,

and can be configured to turn on the light when the patient exits

the bed. For this to work, all parts of the system must agree on a

communication protocol to exchange state and commands

between products in the system.

Communication bus

Movement
controller

Accessory

Sensor

Sensor Actuator Actuator Actuator

Control Panel
E.g. the GUI of the

system

Control

Communication
protocol

Accessory

Control

Communication
protocol

Communication
protocol

Communication
protocol

Accessory

Communication
protocol

Sensor

Fig. 3. Our product in its technical environment.

IV. REQUIREMENTS SPECIFICATION FOR THE GUI

In this section, we describe the different requirements

artifacts used in the development project. The specifications are

concerned with product-level requirements, design-level

requirements, domain-level requirements and other

requirements, as we will discuss below.

The user experience specialist from Mjølner wrote the

specification of product-level requirements (as we have seen

previously, the first version of the product-level requirements

was conveyed by the customer to us orally). It was based on the

prototype and input obtained from workshops with our

customer. It was a document which, in a structured way, listed

the functionality and status information available in different

parts of the GUI. It also described three different operational

modes, based on the user profile, e.g. only a service technician

could change the language and only a nurse or caretaker could

disable specific movements. The structure of the specification

supported description of functionalities and dependencies

between functionalities in the different modes.

The main purpose with this specification was to be used as a

checklist, as a supplement to the prototype, and to give the

customer and us a common understanding of what the scope was

and how the specific functionality should work.

An overall product-level requirement to the GUI was to

reflect the state of the whole system, i.e. all the accessories and

the equipment controller. The GUI should also be used to

configure and control the accessories and the equipment

controller. Fig. 4. shows an extract of the product-level

requirements specification.

The design-level requirements were represented using

interaction design and graphical design. In the process of going

from product-level to design-level, new details about the

requirements naturally appeared and our understanding of the

requirements was improved.

Domain-level requirements were only discussed informally

at a meeting with some documentation in PowerPoint slides.

318

Fig. 4. Extract of the requirements specification.

Moreover, there was a number of requirements, which did

not relate directly to the GUI. They included communication

protocols, interface specifications, the hardware platform and

use of code libraries from our customer. Those requirements

were handled as “technical issues”, which were dealt with in an

ad hoc way without structured, written specifications, but via

discussions at meetings and through phone and email

conversations.

V. REQUIREMENTS PROBLEMS

Above, we have given some background about the project,

the product and the requirements specification. We now

continue by discussing a number of problems related to

requirements that we have encountered. For each problem, we

describe what we actually did and we consider alternative

actions, we could have taken, including a discussion of pros and

cons.

A root cause to the problems we will discuss below is that

we did not manage to establish an effective “communication

infrastructure” early in the project. Mjølner’s main

communication link was with the customer’s project manager.

Initially, it was our impression that he was project manager for

the entire project, including the requirements and design part.

However, it turned out that in practice he was almost only

concerned with the development part. When we had questions

related to requirements and design, we were referred to the sales

department. This meant that many requirements related issues

were dealt with ad hoc, not systematically and not always with

as high a priority as we desired.

A. Goal-Level Requirements were not Agreed and Stated

Explicitly

At the kick-off meeting for the development project in March

2014, together with the customer, we created a first version of a

risk list, which included the following item: The customer’s

sales and development departments have different and

potentially conflicting expectations. The risk occurred and with

severe consequences.

We did experience that the customer’s sales and

development departments indeed had different and conflicting

expectations. As mentioned previously, we had the impression

that it was a goal-level requirement for the sales department that

the new product should help to gain market share on the global

market, including in China.

However, we never ensured that the goal-level requirements

were agreed upon and stated explicitly.

In retrospect, we should have insisted on that. An obvious

advantage of this would have been that it would have helped us

in our discussions with the project manager about scope changes.

The main goal-level requirement, perhaps more properly named

constraint, from the development department was that

development of the new product should not be too expensive.

These two goal-level requirements were in conflict (which is not

unusual, but the situation was more severe here than in many

other projects we have been involved with).

Moreover, an explicit statement of the goal-level

requirements could have catalyzed valuable discussions between

and inside our customer’s sales and development departments

and ultimately a common understanding of the project’s goals

(and constraints) and a better basis for making the necessary

trade-offs.

B. Domain-Level Requirements had too Little Attention

Only to a low degree did we carry out activities that ensured

correspondence between goal-level requirements and domain-

level requirements.

The first problem related to this is that, as we saw above, the

goal-level requirements were not explicitly stated, which gives

alignment an unclear starting point. However, if we assume that

the goal-level requirements indeed were to strengthen our

customer’s global market position, then it is a weakness that we

only conducted field studies and elicited domain-level

requirements in the customer’s local market, not in a number of

markets, ideally worldwide.

Early in the project, it was discussed whether we should have

participated in meetings with our customer’s customers to elicit

requirements and wishes from the market. If this activity had

been carried out, it could have resulted in a better insight or input

which might have helped to find and understand the domain-

level requirements. This could have provided useful input to our

concrete work with design-level requirements.

In many projects, we create scenarios and personas. We did

not do it in this project, but it might have been helpful, because

they could have served as a common reference and an efficient

means of communication. These artifacts might have been very

useful in aligning requirements between the sales and

development department.

More user tests during the project might have been helpful to

validate that the development project was progressing in the

right direction. Moreover, we should have tested on a larger and

more diverse set of users, including international users. Perhaps

we should have insisted harder - even though it would have

increased our time consumption here and now, but the

advantages we would have gained are likely to have been worth

the extra investment.

C. Product-Level Requirements for Several Components were

Missing or Incomplete

As we described in section III.B, our GUI controls a system,

which is built of multiple products. From the end users

perspective, the product is the entire system of hospital

equipment, actuators, motors, sensors and controls.

319

To discuss requirements in this context, we divide the

definition of product-level requirements into two sub-categories,

system-level requirements and component-level requirements,

where system-level requirements pertain to the entire system and

component-level requirements pertain to the individual

products, of which the system is built. In general, requirements

to the components must be specified in a way, which allows the

system-level requirements to be fulfilled when the components

are combined to form the system.

For the whole system (see Fig. 3.) comprised of a number of

individual products, the product-level requirements of the GUI

should be aligned with the product-level requirements of the

individual products in order to end up with a coherent system. In

other words, the GUI product-level requirements should be

aligned with system-level requirements.

An example of this could be a heart rate monitor, which

activates a nurse call if the heartrate drops below a certain

threshold. If the interaction design shows that the monitor can be

configured to deactivate the nurse call if the heart rate returns to

normal, but the heart rate monitor product does not have this

capability, there is a misalignment between the system-level

requirements and the component-level requirements for the heart

rate monitor.

We tried to address the alignment issue in workshops with

our customer, but our customer thought that it was out of scope

for our work and should be handled internally by them. In effect,

this meant that the capabilities of the individual products

indirectly influenced our GUI requirements, but the products

were to be developed by another department at our customer,

and we did not have any communication channels to that

department. We experienced that product-level requirements for

several components were either missing or incomplete.

D. Product- and Design-Level Requirements were not

Communicated Sufficiently Clearly

Communication of product- and design-level requirements,

across our customer’s organisation was a problem.

We had an early meeting with our customer, where we

discussed the product-level requirements. The head of software

development and a person from the sales department were

present. With this attendance, it should have been possible to

emphasize the importance of requirements alignment across

different departments and to agree how this alignment should be

done continuously throughout the project.

Unfortunately, we did not manage to achieve this. Product-

level requirements were not communicated properly and

actively used in our customer’s organization. It is our impression

that our customer do not have much experience with working

with requirements in this way – and we did not manage to make

things work.

Our customer’s sales department are not used to writing and

maintaining a specification of product-level requirements as the

one we presented in Section IV. They see it as viable to quickly

develop something with the “right” set of features, without an

extensive prior analysis; and they are ready to change it

afterwards if necessary. In contrast, in the development

department, they are aware that specifications often are

important; and in some cases absolutely necessary, e.g. in

relation to getting certifications for certain products. A problem,

though, is that our main audience for our product-level

requirements specification was the sales department.

Thus, we did not always succeed in communicating the

product-level requirements to our customer.

We had different experiences regarding design-level

requirements. Here, our customer were interested and ready to

provide feedback. We had continuous iterations with the sales

department who frequently provided feedback. In particular, the

feedback became very concrete when they saw the graphical

design and when they experienced the implementation.

The feedback implied that we went back through levels of

the requirements process. We first updated the graphical design

to achieve approval from our customer, then we updated the

interaction design according to the graphical design and the

implementation, and at last we updated the product-level

requirements specification, although the interaction design and

the product-level requirements specification were no longer

actively used in the process.

In general, we believe that we should have worked with more

specific representations earlier. It might well have been more

effective. If this is correct, we would have used less time on

rework during implementation. Often, we started

implementation of various features before the design was finally

approved.

It is our customer’s sales department, which is responsible

for approval, based on their subjective decisions and immediate

response. Sometimes, they were very busy and we did not make

our case with sufficient conviction, when we tried to argue for

different decisions. A simple correction in the graphical design

could often imply that the implementations task would grow.

This gave us some challenges and it was difficult for the

development department at our customer to understand why the

estimate was increasing again. The development department

often did not know about the changes before being informed by

us.

We should have insisted that our customer’s development

department had validated the product- and design-level

requirements, and insisted on making a walk-through of in

particular the design-level requirement specification with both

the sales and the development people, preferably gathered in the

same room.

E. The Technical Environment was Unstable

All existing products and the previously developed prototype

used a simple communication protocol and in our project

proposal we assumed that the GUI should also use this protocol.

For description purpose, we will call this protocol 1. This was a

simple protocol, but it needed a lot of configuration of each

component to make the components work as a system.

At the full product development project kick-off meeting in

March, we were told by our customer, that they planned to

design and implement a new communication protocol. This we

will call protocol 2. This new protocol would be much more

320

advanced than protocol 1 and provide automatic discovery and

configuration of the components in a system. The new

requirement for our GUI was that it should work in a system,

where some products used the old protocol and some products

used the new protocol.

At the meeting, we were also informed that some of the

accessories to be used in the system, i.e. the components of the

system, were planned to be developed in parallel with our GUI

and that they would use the new communication protocol. The

detailed functionality of these accessories were yet to be

specified. Some of the existing accessories, using protocol 1,

would also be used in the system.

Only one customer employee was assigned to define

protocol 2 and he was only part-time. The development of new

accessories was the responsibility of another department at our

customer. The schedule was unknown to us and we did not have

direct communication with this department.

We never identified a person from the customer, who was

responsible for defining the component-level requirements,

which were necessary to fulfil the system-level requirements. As

a result of this, the component-level requirements were either

missing or incomplete. This implied that it was very difficult for

the person, who should define the communication protocol, to

make progress, because of a lack of overview of what should be

communicated between components.

We had a preliminary version of the protocol specification,

which we used as a basis when we started our implementation.

We agreed on delivery dates for updated versions of the protocol

and accessory specifications, but they were delayed. Before the

summer vacation, we had a meeting with our customer, where

we expected to be given an updated version of the specifications.

But instead we were informed, that the development of protocol

2 would be replaced by development of another new protocol.

We will call this protocol 3. This protocol would use some of

the same principles as protocol 2 but it would no longer be able

to exist in parallel with protocol 1. The new requirement for our

GUI was to use protocol 3 and our customer would provide

specifications and an implementation of the protocol and new

accessories, which used the new protocol.

During the next months, we requested specifications and

implementations, but they were delayed. Mjølner’s software

architect had a one day work-meeting with the protocol

responsible from the customer, where they discussed some of the

principles in the new protocol.

In August, we were told by our customer, that they would

not be able to develop new accessories based on protocol 3

before the November exhibition. Instead, they planned to build

a system based on protocol 1, but using a stricter and predefined

configuration. This was labelled protocol 1.1.

The requirement for our GUI was now to be implemented as

if it was using protocol 3 and to have an adapter layer, which

converted between protocol 3 and protocol 1.1.

In September, we still did not have any specifications of

either protocol 3, protocol 1.1 or the new accessories. The

architect from Mjølner suggested that our GUI should use

protocol 1.1 directly and thus reduce the remaining

specifications to only what our customer had plans for

implementing. Our customer agreed that this was the best

solution.

Later in September, we had a meeting with our customer,

where we discussed the protocol 1.1 specification. The person,

who should specify the protocol, had not been provided with an

overview of neither the system-level requirements or the

component-level requirements, i.e. he had not been told how the

system was supposed to work and had not been informed what

each accessory should be capable of.

We discussed the principles of the protocol and in the

following week, the architect from Mjølner created a suggestion

for a protocol specification based on our GUI specification. The

specification included component specific details and thus

imposed component-level requirements, which were written in a

way so that the system-level requirements would be fulfilled.

This specification was used as basis for further work by our

customer and in late September, the first draft of the protocol 1.1

specification was delivered to Mjølner. We implemented the

communication layer of the GUI according to this specification

and after a few iterations, we had a working system and a final

version of the specification.

From the previous description, it can be seen that the

environment in which our GUI was to exist was not stable.

At the kick-off meeting, it was clear that not all the system

components existed and that the protocol to be used was

unknown and under development. This was identified as a major

risk by our customer’s head of software development. This was

clearly a deviation of the assumptions in our original proposal,

but regardless of that, we agreed to use this new protocol and to

depend on accessories, which were under development.

In retrospect, we might have insisted that the technical

environment was kept more stable or we should have

communicated more clearly about the consequences of the

proposed changes. Alternatively, we could have chosen not to

implement anything in the communication parts of the GUI until

the final specifications were provided to us. This would have

forced us to postpone work and to allocate people to other

projects, which would reduce the chance of having a working

product ready for the exhibition in November. There would have

been a large risk of not being able to meet the deadline, but there

would have been more direct impact on the customer, which

might have increased the chance of necessary action from their

side.

VI. REQUIREMENTS PROBLEMS CONTRIBUTED TO INCREASING

ESTIMATES

The problems we have described above all emerged during

the development of the full product; the prototyping and field

studies were successful in their own right. The problems

described in sections V.C, V.D and V.E directly implied

increased estimates and thus decreased customer satisfaction.

The problems described in sections V.A and V.B contributed

more indirectly. If we had had explicitly stated goal-level

requirements and worked more thoroughly with domain-level

requirements we had been in a better position to make and justify

321

our choices during the project including the choices affecting the

increases in estimates.

Often we did not have the necessary knowledge to deliver

precise estimates. Sometimes the circumstances required us to

deliver estimates anyway; often we did not succeed in

communicating the high uncertainty in our estimates clearly.

Initially, the customer’s project manager understood and

accepted that an extended scope for the product implied

increased time estimates for the development. However, at a

certain point, this acceptance became more difficult to get, and

it was much harder to get acceptance of increased estimates due

to the other factors discussed in Section V.

We accepted this state of dissatisfaction on project level for

too long. We merely described the reasons to increased estimates

in our weekly status reports, and we indeed did increase our

estimates quite frequently. We did not have the instruments to

tackle the problems properly on project level – and there was no

organization in place above the project, e.g. there was not a

steering committee, empowered to resolve the issues that caused

the problems.

The project might have had a different outcome, if we had

insisted on attention and action from higher levels in our

respective organizational hierarchies. As an example, perhaps

we should have stopped the project, when we could see that the

instability in the technical environment was too severe. Also, we

might have insisted that our original agreement was to build a

GUI based on existing technology and that we should create a

new contract and new estimates due to this change. Had we done

that, the contract change would probably have reached a higher

level in our customer’s organisation than the change of scope

and the increased estimates of the existing contract did.

An advantage of this would obviously have been that our

time consumption, and thus our invoice to the customer, would

have been significantly lower. A disadvantage might have been

that we would not have tried as much as we could to help the

customer with making a good product ready for the important

international exhibition in November.

Another less drastic alternative could have been to use a

more formal change management procedure, which might have

contributed to keeping and communicating a better overview of

the current state of the project.

VII. CONCLUSIONS AND RELATED WORK

There are a number of papers, which describe successful

requirements engineering and software development, also under

difficult project circumstances including changing requirements,

e.g. [2] and [7].

From our company, we have over the last few years

published, e.g. [1], [4] and [6]. With the paper at hand here, we

supplement these “success stories” by describing a project,

which did not have the desired outcome. Even though this is

unfortunate, it is not unusual. It is well known that a large

fraction of software projects fail, e.g. the product is never

delivered, a bad product is delivered or there are significant

overrun in deadline and budget. In our case, the latter happened.

The problems we discussed in Section V, all first emerged in

the development of the full product. As we saw, the prototyping

and field studies were done to our customer’s full satisfaction.

However, the problems seem to have their origin in the very,

overall process, we followed during the project. As described in

Section II, the sequence of activities carried out can be described

like this: (1) prototyping, (2) field studies (3) development of a

full product. This is not the “textbook perfect” sequence. It is

more common to do this sequence: (a) field studies (b)

prototypes (incl. validation), (c) development of full product;

see, e.g. [8] or [10].

The actual sequence we carried out was determined by

commercial circumstances. Our first contact with the customer

in the context of the project described in this paper was about

development of a prototype, not about conducting field studies

etc. More generally, often prototypes or something similar will

be a starting point. It is easier to sell than field studies etc.,

because in the latter case, the customer spend money on Mjølner

building up domain knowledge, not on Mjølner developing

something technological that the customer cannot do

themselves. However, in summary, it might be argued that we

carried out main activities in the wrong sequence, with the effect

that our very foundation for requirements was too fragile.

Another perspective on this can be seen by considering our

work with the different levels of requirements. Our sequence of

treatment of requirements levels were: (1) product-level –

delivered orally to us as input to the prototype, (2) design-level

– made by us via the prototype, (3) domain-level – discovered

by us through field studies etc. Somehow on the side were the

goal-level requirements, which were more implicit than the other

requirements-levels. Again, the “textbook perfect” sequence of

treatment would be: (a) goal-level, (b) domain-level, (c) product-

level, (d) design-level; see, e.g. [5].

We believe that the non-standard sequences described above

have contributed to the problems we have encountered in this

project. Our foundation has not been as solid as it should, and

this has added to misunderstandings and mis-alignments in our

cooperation with the stakeholders from the customer. The

problems emerged when our set of customer stakeholders

increased from one person during the prototyping and field

studies activities to several persons and departments in the full

product development project.

In general, when we develop software, we are concerned

with making an argument like “(A and S) implies R”, where A

is assumptions about the environment, S is a specification of our

software (product or design-level requirements) and R is

domain-level requirements. Many authors have described this,

see, e.g. Jackson [3] and Wieringa [11]. Wieringa refers to the

implication above as the “software engineering argument”. A

main problem in the project under discussion in this paper is that

“A” (accessories, communication protocols) was very unstable,

where in other projects, “A” is relatively stable, and “R” for the

most part is found before “S”; this was not the case in our

project.

To sum up, this paper is a Problem Statement, and as such of

a speculative nature. If we had acted differently in the project,

we of course do not know what would have happened. We do

322

believe that the requirements work under similar circumstances

should be carried out more systematically and with higher

priority. It is likely that it would have reduced our problems. In

addition, a stronger project organization (steering committee),

stronger project management and better stakeholder handling,

would probably have alleviated our problems even more.

ACKNOWLEDGMENT

We thank our colleagues, who have commented and

suggested improvements to this paper.

REFERENCES

[1] L. Bruun, M. B. Hansen, J. B. Iversen, J. B. Jørgensen, B.

Knudsen, ”Handling design-level requirements across distributed

teams: developing a new feature for 12 Danish mobile banking

apps”, 22nd IEEE International Requirements Engineering

Conference (RE14), Karlskrona, Sweden, 2014

[2] D. Hauksdottir, A. Vermehren, J. Savolainen, “Requirements

reuse at Danfoss”, 20th IEEE International Requirements

Engineering Conference (RE12), Chicago, Illinois, 2012

[3] M. Jackson, Problem Frames – Analyzing and Structuring

Software Development Problems, Addison Wesley, 2001

[4] J. B. Jørgensen, K. Nørskov, N. M. Rubin, ”Requirements

engineering and stakeholder management in the development of

a consumer product for a large industrial customer”, 19th IEEE

International Requirements Engineering Conference (RE11),

Trento, Italy, 2011

[5] S. Lauesen, Software Requirements - Styles and Techniques,

Addison Wesley, 2004.

[6] M. S. Loft, S. S Nielsen, K. Nørskov, J. B. Jørgensen, ”Interplay

between requirements, software architecture and hardware

constraints in the development of a home control user interface”,

Twin Peaks workshop at 20th IEEE International Requirements

Engineering Conference (RE12), Chicago, Illinois, 2012

[7] A. J. Nolan, S. Abrahão, P. Clements, A. Pickhard, “Managing

Requirements Uncertainty in Engine Control Systems

Development”, 19th IEEE International Requirements

Engineering Conference (RE11), Trento, Italy, 2011

[8] S. Robertson, J. Robertson, Mastering the Requirements Process,

Second Edition, Addison Wesley, 2006

[9] H. Sharp, Y. Rogers, J. Preece, Interaction Design, John Wiley &

Sons, 2007

[10] I. Sommerville, Software Engineering, 8th Edition, Addison

Wesley, 2007

[11] R. J. Wieringa, Design Methods for Reactive Systems – Yourdon,

Statemate, and the UML, Morgan Kaufmann, 2003

323

