2024 IEEE 32nd International Requirements Engineering Conference (RE)

Problems with Communication About Requirements
in a Complex Program in a Large Organization

Agnete Reberg Horup Morten Jokumsen Jens Bak Jorgensen
Mjolner Informatics A/S Mjolner Informatics A/S Mjolner Informatics A/S
Aarhus, Denmark Aarhus, Denmark Aarhus, Denmark
aho@mjolner.dk mjo@mjolner.dk jbj@mijolner.dk

Maja Due Kadenic Nina Wiborg Melgaard

Aarhus University Mjolner Informatics A/S

Herning, Denmark Aarhus, Denmark

maja@btech.au.dk

Abstract—This paper elucidates problems with
communication about requirements in a complex program in a
large organization. Our insights are rooted in experiences we, as
industrial practitioners, have had in our extensive involvement
in a specific program in which we delivered software
consultancy services to an industrial client. Throughout this
involvement, we encountered significant problems, which
caused insufficient requirements engineering. Our efforts to
communicate effectively about requirements proved to be
inadequate. Although some problems could have been
addressed with established requirements engineering
techniques, we have not been able to convince key stakeholders
to allow us to apply such techniques to the desired extent. The
main contribution of this paper is five lessons about our
insufficient understanding of key stakeholders’ interests and
about the impact both the program organization and the overall
company organization had on the possibilities for and
limitations of effective communication about requirements.

Keywords—problem statement, requirements engineering,
communication, stakeholders, business versus I'T, cooperation

[. INTRODUCTION

Mjelner specializes in the development of tailored
software solutions and provides software consultancy services
to both Danish and international clients within a broad range
of domains, e.g., manufacturing, utilities, media and finance.
Mjglner was established in 1988 and has today approximately
250 employees.

This paper examines Mjelner’s involvement in a recent
program comprising several interrelated and interdependent
projects for an industrial client. To safeguard confidentiality,
the client remains anonymous. The client, which has
thousands of employees and hundreds of thousands of
customers, operates according to a subscription-based
business model. Their primary revenue stream is generated
through customers subscribing to various services offered by
the company, entailing a monthly fee. The overarching
objective of the considered program is to enhance digital
channels facilitating interaction between customers and the

2332-6441/24/$31.00 ©2024 IEEE
DOI 10.1109/RE59067.2024.00036

nwm(@mjolner.dk

299

client. These digital channels are accessible through web
pages and apps.

Our purpose with this paper is to describe and analyze the
program with a focus on the problems related to requirements
and particularly shedding light on communication about
requirements among stakeholders. The experiences and
reflections may serve as beneficial insights and to gain a
deeper understanding, which we, as industrial practitioners,
can apply to ensure effective collaborations in future settings
with similar characteristics.

Lauesen [1] classifies functional requirements as goal-
level, domain-level, product-level, and design-level
requirements. We have encountered problems at all four
levels. Additionally, we have encountered problems with non-
functional requirements.

Four of the authors of this paper are practitioners
employed by Mjelner who have worked on the program with
different roles (some with more than one role): user
experience specialist, requirements specialist, architect,
developer, project manager, product owner and Scrum master.
All these roles work with requirements on different levels. The
fifth author is from academia and has assisted with describing,
understanding and analyzing the problems that the
practitioners have encountered.

During our involvement in the program, we have
continuously gathered written material that we have used in
our analyses for this paper. One of the authors has maintained
a diary to keep notes of main events and document various
observations daily. We have also created slide decks for
various meetings and presentations, and we have exchanged
thousands of emails and chat messages that we have revisited,
categorized and analyzed for this paper. This, together with
our observations and recollections of personal experiences, is
our foundation for writing this paper.

The paper is structured as follows: In Section II, we
describe the anonymized client. Section III presents the

program under consideration. In Section IV, we make some
remarks about Mjelner’s software development process and
our approach to requirements engineering. Section V presents
our involvement in the program. Section VI identifies and
discusses the lessons learned. Related work is covered in
Section VII and the conclusions are drawn in Section VIII.

II. THE CLIENT

The client company is a result of mergers of dozens of
smaller companies, and its current organization is only a few
years old. The company has a large workforce, consisting of
thousands of employees, and follows a classical hierarchical
organizational structure. The relevant upper-level
management layers, crucial to the discussion in this paper, are
depicted in Fig. 1.

Director of marketing — Director of CX
Director of service 2
Ccco Director of service 1
CEO Coo
CFO — Director of IT PMO office
X Director of data

Fig. 1.
layers

Organizational diagram of the client’s upper-level management

The top management comprises four individuals: the chief
executive officer (CEO), the chief commercial officer (CCO),
the chief operations officer (COO) and the chief financial
officer (CFO).

The CCO has the overall responsibility for two important
business divisions which provide the company’s two main
services to customers. The CCO also holds overall
responsibility for the company’s marketing, overseeing the
company’s director of marketing.

The company has a Customer Experience (CX)
department dedicated to ensuring a positive experience for
customers interacting with the company via digital channels.
The director of CX reports to the director of marketing. CX is
the main driver of the program under consideration in this
paper. CX has the budget for the program and is responsible
for the overall management.

The client company has an IT department, and this
department is also a main stakeholder in the program we are
considering. The director of IT reports to the company’s CFO.
Among other duties, the IT department is responsible for the
company’s data (we will elaborate this subject in Section
VILE) and they are responsible for the company’s overall
principles for systems and software architecture.

There is also a Project Management Office (PMO) which,
among other things, keeps an overview of our client’s ongoing
projects and programs.

300

III. THE PROGRAM

The program under consideration started in early 2021.
The program planned to deliver: (1) a new and improved web
page, where the client could sell its services; (2) a new and
improved self-service web solution where the client’s existing
customers could get an overview of their engagement, pay
bills etc.; (3) a brand-new app providing various overviews to
customers. The program organization is illustrated in Fig. 2.

Steering committee

Head of the committee
Director of CX

Director of marketing VP of service |
VP of service 2 VP of IT

Program Management

Program manager 1 Program manager 2

Core group Architecture group

Development
team 2

Development
team |

Development
team §

Fig. 2. Diagram of the program organization

The program featured a steering committee [2], chaired by
the director of CX. The committee included a representative
from the IT department and representatives from the two
primary business divisions (service 1 and service 2), each
represented at the vice president (VP) level; for each service,
the vice president reports to the director of that service.
However, organizational changes caused a discontinuity in IT
representation, resulting in extended periods without expertise
in software and software development within the steering
committee.

The program's day-to-day management was a
collaborative effort between two program managers — one
from the PMO and another reporting to the director of
marketing. Various organizational units, such as an
architecture group and a core group were established to
facilitate program coordination; the core group included
several members from CX.

The program comprised eight development teams, each
with approximately eight members. Some teams focused
primarily on front-end development, concentrating on the
creation of new customer-facing software clients. Other teams
were predominantly back-end, dedicated to making data from
numerous source systems accessible for the new software
clients and managing data exchange between the source
systems and the new customer-facing software clients.

The software teams were agile teams. Immediately before
the summer of 2022, most of the team members had extensive
training in Scrum [3], facilitated by an external consultancy

company. Several agile coaches were part of the program to
guide teams in proper agile ways of working.

The communication between the software teams and the
client's business divisions was facilitated by product owners,
as defined by the Scrum framework. The teams held Scrum
events, including regular sprint plannings, reviews and
retrospectives. Typically, a team was comprised of a Scrum
master, a lead developer, a tester, and several developers. The
majority of the teams had product owners from CX.

The program relied on various data deliveries from the
company’s IT department, e.g., data about customers and their
agreements from various systems in the client’s full IT
landscape. The establishment of this data exchange fell
outside of the program’s responsibilities. Consequently, Fig.
2 does not designate a specific entity responsible for data. Our
conjecture is that this way to organize the program relative to
its environment was the consequence of organizational
politics rather than the result of a more rational decision about
the optimal program structure.

IV. REMARKS ABOUT MJ@LNER’S SOFTWARE DEVELOPMENT
PROCESS AND APPROACH TO REQUIREMENTS ENGINEERING

Mjelner’s developers are experienced in the agile
approach to software development, in which the teams work
according to the principles of Scrum.

Mjelner’s software professionals are also experienced in
various requirements engineering techniques. One such
technique is EventStorming [4], a rapid, group modelling
approach that forms part of domain-driven design. This
method, originally created by Alberto Brandolini in 2012, is a
workshop-style technique that brings together project
stakeholders, including developers and non-technical users, to
map and explore complex business domains. It is popular and
in widespread use in the software industry today.

Another such technique is EventModelling [5], which
describes systems by illustrating how information evolves
over time. It omits transient details and focuses on what is
durably stored and what the user can observe at any point in
time. EventModelling represents a sequence of events linked
together by user interactions and their related inputs
(commands) and outputs (views). The method uses
wireframes to document all these system interactions across
different user types.

Both EventStorming and EventModelling aim to enable
business stakeholders to describe business events that occur,
or they want to occur, within the envisioned software system.
A key component of these methods is that they allow business
stakeholders to model a specific business process using their
own words. The intention is that during these sessions,
business stakeholders can provide enough detail to developers
to gain a comprehensive understanding of what needs to be
implemented and why.

By bringing business stakeholders and software
professionals into the same room, the requirements
engineering techniques have the advantage of being fast,
straightforward, engaging and effective. They can result in a
full behavioral model that can be quickly implemented as a
proof of concept and then validated. One of the greatest values
of these methods is the conversations they generate. These
conversations catalyze mutual understanding, giving software
professionals a better understanding of business processes,

301

and business stakeholders a better understanding of technical
solutions under consideration.

More generally, for projects and programs managed by
Mijelner, three project members have leading and coordinating
roles: A user experience specialist with a main responsibility
for requirements engineering regarding functional
requirements, an architect with a main responsibility for
taking non-functional requirements such as performance,
security, scalability, and maintainability into consideration
and a project manager with a main responsibility for ensuring
delivery within the agreed time and budget. These roles work
very closely with each other and with other team members,
including the developers who write the software. So, in
summary, in Mjelner’s projects, it is the user experience
specialist and the architect who, together, are the main drivers
of requirements engineering.

V. MIQLNER’S INVOLVEMENT

Mjelner’s involvement with the client in the program
started in July 2022, when the program had been running for
more than a year.

We became extensively involved from the beginning, as
developers from Mjelner joined all eight development teams,
see Fig. 2. The developers adapted to the ways of working that
had been established previously. A timeline of the main events
is illustrated in Fig. 3.

Early 2021 []

Program started

July 2022 Mijelner’s involvement started

Reported problems based on product

November 2022
owner role

Presented proposals for how to begin to solve
these problems

December 2022

Applying our preferred requirements

January - February 2023 A s N
r) & engineering techniques on a new feature

Realising that the program was not seen as an
IT program but as a marketing initiative

March 2023

= 1 Srvi WS @ T S

March - Apeil 2023 In d_cpth Imtcr\-u. ws about requirements
engineering with all produet teams

Architecture review both inside-out and

May onwards 2023 S
outside-in

October 2023 Program reorganization considered

Seeking influence on company reorganization
Architecture review presented for senior
management

November -
December 2023

Program transitioned into operation, support
and maintenance

End 0f 2023

Fig. 3. Timeline of the program’s main events

The program suffered from substantial problems, e.g.,
many program participants experienced problems with lack of
overview of the “big picture”, insufficient quality assurance
and low efficiency in their daily work. One of the authors, a
project manager, served as a product owner (one of the few
product owners not from CX) for several months on one of the

software teams, directly witnessing numerous problems in this
capacity. Another author, an architect with experience from
multiple projects and programs for this client, also gained
insights into many of these problems.

Although many stakeholders of course were already aware
that the program suffered from severe problems, we had not
seen explicit descriptions of the problems, and it was our
assessment that they had not been identified and presented
clearly for the right stakeholders. Therefore, the project
manager author reported his observations about the team in
which he was product owner. He focused on the team level
first, because there he had first-hand, reliable information, and
supplemented with conjectures about similar problems on the
program level; that was done in November 2022. There were
problems with overall scope, detailed requirements, estimates,
cost, schedule, quality, test, staffing, organization,
communication, stakeholders and risks.

Among others, the head of the program steering
committee, the director of CX, was present at this
presentation. Immediately after, the problems in the program
received more attention. More specifically, we started joint
improvement initiatives between the client and Mjelner on the
program level. The setting for this was a series of meetings
with several representatives from CX, one representative from
the IT department, the two program managers plus senior
management from Mjelner and the project manager author
from Mjelner. The representative from the IT department was
only present at the first two meetings and did not participate
in the following meetings. The reason for senior management
from Mjelner to participate was that the considered client had
very high priority; Mjelner really wanted to be successful. The
presence of senior management might enable solutions to
organizational problems and problems about staffing on
various levels, and we expected that there would be a need for
that (however, we did not succeed in solving these problems,
as we will elaborate in Section VI).

In December 2022, we proposed solutions to some of the
identified problems. One element was to introduce explicit
and classic project management to the program. Until this
point in time, the Scrum roles of Scrum master and product
owner were responsible for handling project management
matters, yet their impact proved insufficient. To address this,
we recommended adding software project managers to the
program. These individuals would collaborate with the
development teams, the core group, the architecture group and
program management to implement improvements and get the
program under control. This recommendation was based on
our usual organization of programs managed by Mjelner as
described in the end of Section 1V; we reiterate that this
program was managed by the client, not by Mjelner.

The other crucial element, and the central focus of this
paper, was initiating the establishment and systematic
application of requirements engineering. For this, we needed
a user experience specialist and an architect, cf. Section IV,
and this was the first involvement in the program of two of the
authors of this paper.

We presented basic concepts and techniques as described
in [1] for the client, i.e., the four levels of functional
requirements - goal, domain, product and design - and the
importance of early attention to non-functional requirements.
We emphasized the importance of engaging the necessary
stakeholders at the right time in the requirements engineering

302

activities. We described how elicitation, specification and
validation of requirements all are crucial activities. We
emphasized that end-user expectations and technical
feasibility must be aligned early, continuously and frequently.
At the time, our perception was that we were effectively
conveying important messages to our client (however, it
became evident later that we were not doing so to a
satisfactory extent, as we will elaborate in Section VI).

In January and February 2023, we applied our preferred
requirements engineering techniques as presented in Section
IV on a new feature that was to be developed. We had
elicitation workshops with representatives from the business
divisions responsible for service 1 and service 2 (see Fig. 1)
and the development team which were going to develop the
feature. The second workshop involved dedicated end-users
exchanging knowledge about the domain, user and business
needs, and pains and gains. Also, a shared understanding of
dependencies between involved technical systems was
obtained and documented.

We wrote a specification for a minimal viable product
(MVP), which was the result of a tough prioritization, given
the available budget and desired timeframe. We had a total list
of 25-30 desired sub-features, and (only) 3-4 of these were
selected for inclusion in the MVP. We validated the MVP
specification with the representatives from the business
divisions, and they agreed on the proposed scope. Our
perception was that we were effectively communicating the
intended message. Our own assessment was that we
conducted valuable work and delivered a specification for an
MVP, which was the result of an accomplished process with
the involvement of the right stakeholders in the right activities.
However, our main client stakeholder, CX, had a different
opinion of the situation. Having observed our efforts, they
expressed the view that it did not bring additional value.
According to them, they had a comprehensive handle on what
we referred to as "functional requirements". This was
contradicting the message we got from many members of the
development teams, when we, in March and April, had
discussions with them about the status on their work with
requirements.

At a difficult meeting in late March 2023, in the series of
improvement meetings initiated in November 2022, we
realized that important client stakeholders did not see the
program under consideration as a software development
program (with all the implications of this), but rather as a
marketing initiative. This was a crucial realization, and we
will elaborate and discuss it in more detail in Section VL.A.
From this point, we were asked to stop our work with making
general improvements to the work with functional
requirements. CX decided that Mjelner, being software
specialists, should concentrate on more technical subjects. In
agreement with our client, we started to do a thorough
architecture review.

The architecture review had two parts: (1) a so-called
inside-out perspective and (2) a so-called outside-in
perspective. The outside-in perspective starts with considering
the users’ perspective, and the inside-out starts with
considering the software under development. Ideally, the two
perspectives should of course be eventually aligned. The two
perspectives and their relation can be seen as similar to the
observation that in general, when we develop software, we are
concerned with making an argument like “(A and S) implies

R”, in which A describes assumptions about the environment,
S is a specification of our software (product or design-level
requirements) and R is domain-level requirements. Many
authors have described this, see, e.g., Jackson [6] and
Wieringa [7]. Wieringa refers to the implication above as the
“software engineering argument”.

Two of the authors were the main drivers of (1), and we
applied the Architecture Tradeoff and Analysis Method
(ATAM) from the Software Engineering Institute at Carnegie
Mellon University [8], which has a high focus on non-
functional requirements, in the ATAM terminology quality
attributes or utility trees. The main drivers of (2) were two
external consultants, not employed by Mjelner and with a
close relations to CX, who were very experienced in the
specialized domain of marketing technology and who have
worked with numerous large companies and organizations on
establishing modern marketing platforms.

The architecture review work was extensive and lasted
from May 2023 well into the autumn 2023.

From early October 2023, we discussed new ways to
organize the program with our client and considered a scaled
agile approach. We considered introducing SAFe [9] and
using concepts from SAFe as a framework for requirements
engineering, e.g., discussing requirements at different levels
represented as so-called epics, features and stories. Moreover,
we worked on guiding which stakeholders should be involved
in the processing of these during events such as product
increment planning (PI planning) in the sense of SAFe and
sprint planning in the sense of Scrum and SAFe. In this way,
we again got the opportunity to discuss functional
requirements with our client, but not as a subject in its own
right as we had tried earlier, but as part of a general process
improvement.

In November and December 2023, the efforts we invested
in architecture review and program reorganization using SAFe
were incorporated into concurrent work on a comprehensive
digitalization strategy for our client, led by a prominent
international consultancy company. In this way, our work was
part of the foundation for more general improvements of our
client’s development projects and programs, but it was too late
to have an effect on the program under consideration in this

paper.

By the end of 2023, the considered program was seen as
completed from a development and economic perspective, and
it transitioned into operation, support and maintenance. In this
new context, there is a substantial backlog of improvements
that should be made, encompassing significant enhancements
to both architecture and program organization.

VI. LESSONS LEARNED

Having described the context in which our work took place
above, we will now identify and discuss lessons learned
pertaining to our communication problems with stakeholders
about requirements. There are five lessons; the first three
lessons are related to communication problems we
encountered with stakeholders within the program
organization, whereas the last two lessons learned are related
to stakeholders from the broader organization of the client’s
company.

303

A. Our communication was too technical too early and we
were not sufficiently sensitive to the uncertainty caused
by our presence

In our communication with the CX department, we did not
start in the right way. Our choice of terminology, particularly
in the discourse on "requirements" was inherently software-
centric. We were aware that we should not discuss the
technical details of software development, but the very term
“requirement” hints an inside-out perspective (refer to Section
V for the introduction of this term) that originates from the
needs of software professionals, such as ourselves. What we
failed to effectively communicate and establish was the
crucial importance of early requirement definition and the
necessary coordination and communication between business
representatives and software professionals.

We did not adequately address, at an early stage and as a
bridge to a subsequent discussion on requirements, the issues
that were important ones, seen from the perspective of CX.
These include personalized experience, customer convenience
and digital go-to-market strategies. These topics adopt an
outside-in perspective and are more fitting initial points of
discussion, rather than immediately diving into detailed
inquires as “please tell me about your goal-level requirements
and your domain-level requirements”. This type of inquiry is
needed as a foundation for effective software development,
but we probed it too early. There are some subtle differences
about communication here that we do not fully understand;
e.g., personalized experience and customer convenience are
indeed fitting to categorize as goal-level requirements, but the
very “requirements” angle caused us problems.

This realization came to the forefront during the
architecture review, which we conducted in collaboration with
cooperation partners possessing a background in marketing
technology and extensive experience in communicating with
organizational entities such as CX departments. Our partners’
communication proved significantly more effective than ours.
However, it did not explicitly address "requirements"; that
would be our task, but we initiated this communication
prematurely, as our stakeholders were not yet prepared for
such discussions.

There are at least two reasons why we failed. The first is
that we were eager to make progress and wanted to get
requirements engineering established and thus requirements
under control as soon as possible. The program had severe
problems, and we were convinced that requirements
engineering was one of the initiatives we could apply to make
improvements. The second reason is that when we initiated
our joint improvement initiatives between the client and
Mjglner, in November 2022, it took several months before we
realized that the CX department did not perceive the
considered program as a software development program but
as a marketing initiative, cf. the difficult meeting in March
2023 described in Section V. In a pure marketing initiative,
“software requirements” are not on the agenda. It is a technical
issue, not interesting for marketing specialists, and a subject
that somebody else should care about.

We had assumed, and went too long before challenging
this assumption, that our client’s maturity regarding software
development and software projects and programs was higher.
We had not realized that our counterparts in discussions about
requirements were much more marketing specialists than they
were used to support software development. We did not

provide the necessary explanations in due time. In summary,
we were operating in two distinct “worlds” without
recognizing this divergence.

When we tried to establish and apply requirements
engineering, we were, in retrospect, not sufficiently sensitive
to the very uncertainty this attempt raised in the CX
department. We were entering their territory. In their usual
way of working, CX gathered requirements (again, our term
rather than theirs) from the business divisions, and they passed
these requirements on to the software teams; this is elaborated
in Section VL.B.

We advocated a different, more iterative and direct
approach. From our perspective, this change was not only
evident but also necessary for improvement. The stakeholders
in CX had a different perception. For them, such a shift might
be seen as a threat to their organizational position, potentially
resulting in a decrease in power and influence. We perceived
opposition but struggled to effectively present our case.
Unfortunately, we did not adequately recognize and address
the fears, concerns and insecurities of our key stakeholders in
a timely manner.

The lesson is that we need to allocate sufficient time to
discuss our client's problems from their own perspective.
While the top two layers in Lauesen's characterization [1] may
be considered problem-oriented, an early and exclusive focus
on requirements can be overly software-centric. The degree of
being problem-oriented is context-dependent and requires a
nuanced understanding. Additionally, building confidence
with our main stakeholders is crucial. We should aim for them
to view us not as a threat but as a valuable support, while we
recognize that achieving this is challenging if we inadvertently
actually do pose a threat.

B. We did not succeed in explaining the need for direct
communication between business divisions and sofiware
teams and for a program reorganization

In our client’s usual ways of working, CX was a main
stakeholder in everything about requirements. They have done
all communication about requirements with the business
divisions on one side, and the development teams on the other
side, as illustrated in Fig. 4.

External design
bureau
Specification
(wireframes/design)
Service |

CX Development teams

Service 2

Elicitation Istrhekittion

Several months
Fig. 4. Tllustration of the work with requirements

Prior to our involvement, CX had held one workshop with
one of the business divisions about a new large and complex
feature to be developed in the program under consideration.
As a result of that workshop, the CX department asked an
external design bureau to design the feature, in the form of
wireframes and interaction design [10]. The external design
bureau did not participate in the workshop in which the first
elicitation took place and had no written specifications
documented. The external design bureau took some months to

304

design what was requested from the CX department but
without any communication with either the development
teams or the business divisions during this time. When they
were done, CX requested one of the development teams to
implement the solution.

However, it turned out that the implementation of this new
feature was not possible. Data to be presented on certain
screens could not be made available, given the underlying IT
landscape. What we observed here was a misalignment
between the design-level requirements that were delivered by
the external design bureau and the upper-level (goal and
domain) requirements [1] that the business divisions had
identified. Important information about purpose and context
had not been passed on to the development team, which, thus,
was not able to assess the technical feasibility of a proposed
solution.

To us, this was not a surprise as it was a consequence of
insufficient interaction between business stakeholders — who
should gain value by the efforts of the development teams —
and the actual development team. The fact that requirements
passed through the CX department and the external design
bureau caused distance between stakeholders who should
coordinate closely, and it resulted in delays and
misunderstandings.

Moreover, having an external design bureau do design
without documenting the high-level requirements and the
assumptions the design is based on in written form leaves
gaps. Not all information of relevance for a development team
can be read or understood by looking at interface design. More
written specifications supplemented with oral and direct
communication, workshops, etc. are also needed. A design
should be created by involving business stakeholders as well
as software professionals to ensure alignment between
business wishes and technical feasibility.

More generally, the four levels of requirements [1] have
not always been addressed at the right times and with the
necessary stakeholders. Technical design-level requirements
have sometimes been decided by the CX department or the
design bureau, without consulting the development teams. As
an example, CX instructed a development team that the web
development technique of iFrames should be used for a
feature, because CX had the impression that this would result
in earlier delivery. In this way, the CX department was
entering technical territory, and this should have been done
with greater caution and a more open communication, as CX
are marketing experts, not technical experts.

Furthermore, as depicted in Fig. 4, requirements were
elicited and specified but not validated. This led to significant
re-work as assumptions made during the initial elicitation
phase were misunderstood. To avoid mistakes like these,
several actions should be taken, including involvement of end-
users to discover a potential mismatch between what the
business thinks is needed and what the end-users actually
need. In addition, validating requirements from all three
perspectives - 1) end-users' needs, 2) business’ needs and 3)
technical feasibility — is crucial. To avoid rework, alignment
should occur concurrently with the design process, ensuring
the design remains current until the time it is finalized. This
approach was implemented during our second workshop held
in January and February 2023 about the MVP for a new
feature, where we demonstrated our requirements engineering
techniques, cf. Section V.

The lesson learned is that we should to a higher extent have
argued the inadequacy of the current way to organize the
design/requirements work and the insufficient bridging to
software development, and we should clearly have argued that
a program re-organization was needed.

C. We did not argue proper domain modelling, global
overview of dependencies, focus on non-functional
requirements and resolution of basic architectural
inadequacies sufficiently early

Foundational principles of requirements engineering have
not been followed by our client. This has ramifications for
other crucial sub-disciplines in software engineering such as
architecture and testing.

To illustrate this, we consider one of the development
teams in the program which was working on backend services
to support the new app (one of the authors was on this team).
Close to the planned launch of the app, it was discovered that
there were two different and contradictory views of the
domain in which the client’s services were used, in two
systems that the app was dependent on. This was critical.

The first system owned all the customer data. In this
system, important customer information was stored, which
included the customers’ addresses. Here, one customer could
have one or more addresses (e.g., the year-long residence and
a country house) while at the same time, one address could be
attached to one or more customers. In short, there was a many-
to-many relationship between customers and addresses. The
second system relied on data from the first system. It was
therefore essential that these two systems had the same view
of customers and their addresses. But the second system only
had a one-to-many relationship; one customer could have
many addresses, but one address could have only one
customer. This obstructing problem was not noticed until the
beta testing of the app, when testers found this problem.

A problem like this should certainly have been identified
earlier, and it would have been identified with proper
requirements engineering, with emphasis on an agreed and
consolidated domain model across a program - or even better,
across the whole client company. With requirements
engineering in place from the beginning, there would have
been a foundation with a domain model. Describing not only
the system to be developed (the “machine”), but also the
environment is crucial, as observed by Jackson and many
others decades ago [6].

The CX department was acting as a bridge between the
business divisions and the development teams, cf. Fig. 4.
Since CX is a marketing department, they were not aware of
the importance of a domain model.

The absence of such a model was one of the major findings
in the architecture review. At the same time, a global overview
of dependencies between the work done by different
development teams did not exist. Such an overview could be
the responsibility of a program architect, but architect
responsibilities in the program were, in general, too
distributed, and not with clear roles and responsibilities. This
was a situation which many program participants could see the
consequences of in their daily work, and one of the
conclusions of the architecture review was that this problem
should be resolved as soon as possible.

305

The lesson is that we should have communicated clearly
that a domain model and a global overview of dependencies is
necessary, and without it, problems like the one described
above will keep occurring. It should be ensured that all four
requirement levels [1] are described and aligned, so that the
developed technical solutions are in accordance with the needs
in the real world. We should also have insisted on earlier
attention to non-functional requirements and resolution of
basic architectural inadequacies. It was evident for many
program participants, including ourselves, that there were
severe problems. We should have made these arguments for
the right stakeholders, but we were not able to summon them
in our client’s organization. The right stakeholders are
obviously not CX, who have focus on marketing; non-
functional requirements and software architectures are more
proper subjects for discussion primarily between software
professionals, of course with the remark that it is important for
all stakeholders that a system of good quality is developed.

We did make these arguments, and, we believe, with
conviction, as part of the architecture analysis, cf. Section V,
in which, e.g., non-functional requirements like performance,
security, scalability and maintainability were put in focus and
prioritized. However, it was too late to have the desired effect
in the program, as the architecture review was done after we
had been on the program for about one year, and close to the
completion in the end of 2023.

D. We did not argue the need for a steady input of high-
level requirements from the organization to the program

sufficiently well

For an efficient program, it is crucial that there is proper
input of high-level requirements from the organization to the
program, with a fixed allocation of development capacity for
a given period of time. This was not always the case.

As we have described earlier, the CX department provided
the requirements to the development teams. CX was therefore
in charge of the requirement elicitation, e.g., in the form of the
workshop with one of the business divisions that we have
discussed earlier. However, CX was dependent on the rest of
the organization, not the least the business divisions, where
the high-level requirements naturally have their origin.

There were bottlenecks in the system. Some of the
development teams experienced periods with many new
requirements, which all had a tight deadline. At other times
there would be very few requirements to work on. In the busy
periods, the development teams might ease on the software
quality to reach deadlines, while in the quiet periods, the
development teams would have time to fix technical debt and
the like.

Our client’s top management often communicate to the
client organization that the company is very busy and must act
fast to preserve and expand its market position — this happens,
e.g., at quarterly so-called town hall meetings for all
employees on Teams. The overall recognition is that
digitalization should happen now and fast, otherwise, our
client’s competitors will do it earlier and, ultimately, win the
market.

For this to be operationalized efficiently, a company
organization must be in place that ensures that this very high-
level, goal-level requirement, results in well-agreed so-called
epics, features and stories to work on during any given sprint
planning, where the backlog for the next sprint is defined, for

any development team in the considered program (and other
programs and projects as well).

This has not always been the case. On many occasions,
there was a lack of well-refined requirements seen from a
developer's point of view. And there were disagreements
between the product owners from CX and the developers on
the development team. From what we have experienced, and
as described previously, the CX department would think that
the requirements provided for the development teams were
sufficiently refined and ready for development, while the
development teams would disagree.

The lesson learned is that there is a need to restructure the
client’s organization in a way that makes it possible to
maintain a steady input of high-level requirements, and to
foresee the requirements before a potential tight deadline
shows up. The development teams need time to analyze and
investigate how problems are best solved. We have, however,
not been good enough at communicating this.

E. We did not argue overall company reorganization and
tighter connection between cooperating units and
programs sufficiently well

The program considered in this paper (in this section
consistently referred to as “our program”, as we also discuss
other programs here) was not the only program our client was
running. Several programs were active as part of a
consolidation of a fragmented IT landscape, which was a
natural consequence of all the company mergers.

Our program had many direct dependencies to other
programs. Without deliveries from these programs, our
program would not be able to be a full success. Particularly,
two of these other programs were essential: (1) development
of a system that would handle all the customers and their
products and subscriptions and (2) development of a system
that would hold information about existing legacy systems in
which a customer has records. These programs were seen as
IT programs and were the responsibility of the IT
organization, see Fig. 1. Without these systems, our program
would not have access to the data needed to fulfil the
requirements for the digital channels.

Ideally, these programs would be aligned and be in close
contact with each other. But in this organization, each program
would be steered according to deadlines defined by the
business divisions — with low or no alignment between the
different programs. This approach failed multiple times when
dependent programs missed their deadlines or had higher
prioritized tasks and goals. The effect on our program was that
multiple temporary solutions were developed to meet the
deadlines. It also had a significant impact on the ability to test
the systems. Test of the features developed by the
development team required extensive coordination between
the different programs. The complexity of these tasks was, in
our assessment, not fully understood by key stakeholders
within our client.

One might anticipate that problems of this nature would be
addressed and managed by the steering committee in charge
of coordination. However, in our program, that was not the
case. While the problem was acknowledged, the steering
committee considered it beyond their influence and did not, as
we saw it, perceive it as part of their responsibility. We can
only speculate about the reason, but it might be that they were
already too busy with their own responsibilities and took the

306

position that higher-level coordination should be dealt with by
higher-level management in the company organization. As
previously noted, this program was identified as a marketing
initiative rather than an IT project. The lowest-ranked
employee to tie marketing and IT together is the client’s CEO,
cf. Fig. 1. To us, this seems to be a problematic organization.

Unfortunately, we were unable to effectively
communicate these problems to the right stakeholders, despite
the fact that the problems regularly impeded the progress of
our development teams. Internally, we frequently discussed
the issue, but we struggled to identify the right channels for
expressing our concerns and observations. At this point in
time, the trust between our client and us had already been
challenged due to misunderstandings. We never recovered
from the fact that we did not succeed in our communication
about the need for a significantly improved approach to
requirements engineering.

The lesson learned is that we did not argue overall
company reorganization and tighter connection between
cooperating units and programs sufficiently well.
Alternatively, we should have more readily accepted these
organizational characteristics as given and attempted to
navigate around them, rather than trying and hoping to directly
contribute to their resolution.

VII. RELATED WORK

In this section, we explore the literature on communication
challenges related to discrepancies in perceptions among
project stakeholders and roles, as well as the human, cognitive
and organizational aspects in requirements engineering
relevant to the lessons learned in section VI.

Our objective is to comprehensively enrich our
understanding of this critical domain and contextualize this
study within the broader landscape of existing and future
research in the field. Communication is the dynamic process
of exchanging information, ideas and emotions between
individuals or entities, which fosters understanding and
connection [11]. It is fundamental in managing relationships
with project stakeholders, as it facilitates the exchange of
information, expectations and feedback [12]. Yet,
communication gaps between organizational roles within
development affect requirements [13].

Requirements engineering is recognized as the foundation
of software development [14] encompassing a systemic and
integrated process of analysis, elicitation, specification,
validation, assessment, negotiation, prioritization and
evolution. Obtaining high-quality requirements is critical, and
difficult, with numerous challenges associated with these
efforts [15,16]. Common challenges encompass the selection
of elicitation techniques, traceability and prioritization of
requirements, requirement change management, and
communication gaps with customers and other stakeholders
[16]. Notably, Ambreen, Ikram, Usman and Niazi [14]
identify requirements communication among emerging topics
within the empirical research of requirements engineering.
Communication problems and barriers in requirements
engineering are also observed outside the IT industry [17].

The intense communication effort involves a broad range
of stakeholders with diverse skills, backgrounds and statuses
in order to surpass the semantic gap that these stakeholders
(such as users and developers) inevitably foster [18].

Therefore, achieving effective communication is consistently
challenging and remains a recurring problem in the elicitation
of requirements. A primary cause of communication problems
is that the nature of system design and development is
inherently a behavioral process. Human and organizational
elements significantly influence the design in this context
[18]. Communication problems hinder the establishment of
shared understanding among stakeholders, such as users and
developers. Poor communication may arise from challenges in
articulation, involving the ability to express information
effectively, as well as from misunderstandings characterized
by divergent interpretations of the same piece of information,
and conflicts [18].

Kasauli, Knauss, Horkoff, Liebel and Neto [19] identify
six areas of challenges through a multiple-case study. These
areas encompass the following: 1) to build and maintain
shared understanding of customer value, 2) to support change
and evolution, 3) to build and maintain shared understanding
about the system, 4) to make a suitable representation of
requirements knowledge, 5) to take process aspects into
account and 6) to consider organizational aspects. The authors
emphasize that regardless of the overall development
methodology (plan-driven or agile implementation), similar
challenges persist in all companies. Indirectly, some of these
challenges can be related to communication problems
according to Coughlan and Macredie [18]. Particularly, the
ability to establish a shared understanding of value as well as
of the system among stakeholders.

The literature reviewed here underscores the widespread
presence of communication challenges within requirements
engineering. Our empirical data and experiences are supported
by existing literature, affirming that communication problems
are indeed a well-recognized aspect of this domain. By
elucidating how these insights contribute to a more
comprehensive understanding of this critical area, our study is
positioned within the broader landscape of existing and future
research in the field.

In this context, elicitation of requirements is also
associated with the perspectives of stakeholders [20], which
include customers, requirements engineers, analysts, domain
experts and developers [21]. Gathering requirements is a
knowledge-intensive task, wherein stakeholders require
diverse information for understanding or negotiating the
requirements and need tools to support the information
overload.

Burnay, Jureta and Faulkner [22] emphasize the
importance of conducting interviews with stakeholders during
the requirements elicitation phase. Direct communication with
stakeholders provides invaluable information through verbal
and nonverbal communication. Misunderstanding
stakeholders can result in the specification of a wrong system
or in lack of compliance. The diversity among stakeholders
entails various expectations and perceptions of the systems-
to-be. Yet, different assumptions are not the problem itself; it
is when these assumptions remain implicit. The authors
conclude that stakeholders tend to share information about
what they want and their expectations to the system, but the
engineers should not expect the stakeholders to know what
information on requirements is relevant for designing the
system-to-be.

While literature emphasizes the importance of thinking
about stakeholders, our empirical evidence and experiences

307

deviate. In the light of the knowledge gained through the
literature, we acknowledge that we did not sufficiently and
explicitly consider the project stakeholder management
aspect. This realization opens avenues for further research,
particularly in empirical studies, to explore and understand the
dynamics of project stakeholder management within
requirements engineering more comprehensively.

In a literature review, Davey and Parker [23] identify
several challenges that are related to communication. The
human aspects of requirements engineering pose challenges to
straightforward communication between consultants and
clients. Cognitive limitations inherent in individuals hinder
effective communication. Additionally, diverse cultural and
background factors contribute to the absence of a common
language, e.g., technical professionals may struggle to grasp
business concepts, while business professionals may face
difficulty understanding IT concepts.

Human language often proves inadequate for describing
technological solutions, e.g., numerous terms commonly
employed in the real world, such as 'user friendliness' and
'reliability,' lack precise technical definitions. Requirements
undergo changes as the project progresses and clients gain
insights into the possibilities as the project unfolds [23]. Given
the inherently dynamic nature of business, requirements are
subject to modifications throughout the project's lifespan.
Additionally, individuals may alter their preferences and
perspectives on what they initially desired. The client may not
be able to articulate what the business needs, where certain
requirements remain tacit, meaning they are understood by the
client but not explicitly stated. Some clients may be unwilling
to assist with the project, where a client representative may
have conflicting interests with other project members or the
project's goals. Additionally, clients might perceive the new
system as a component of power struggles within the
organization [23].

With this knowledge in mind, our observations underscore
the persistent challenge of cognitive limitations and language
gaps between business and IT professionals. This dynamic
demands attention from organizations, urging them to find
common ground to bridge communication deficits between
these two domains. Moving forward, future research should
investigate deeper into the cognitive barriers hindering
effective communication between business and IT
professionals in requirements engineering. Additionally,
exploring the role of mediators who possess a comprehensive
understanding of both technical and business aspects could
offer valuable insights into enhancing communication and
collaboration within requirements engineering processes.

In summary, our review highlights persistent
communication challenges in requirements engineering. It
underscores the need for effective communication strategies,
particularly in areas like shared understanding, system
representation and organizational aspects. Requirements
engineering emerges as a knowledge-intensive process shaped
by stakeholder perspectives, which highlights the human and
cognitive factors that contribute to communication challenges.

VIII. CONCLUSIONS

Communication between IT professionals and other
stakeholders is a recognized and complex challenge. We
continuously attempt to improve in this area, as illustrated in
the successful collaboration and communication detailed in

[24]. However, our current study reveals a contrasting
scenario within the program under consideration in this paper,
in which we have encountered unresolved problems in
communication and collaboration. Our understanding of our
stakeholders and our client’s organization was inadequate. It
is noteworthy that this understanding has evolved throughout
our involvement in the program and was not fully developed
in the early stages of our involvement.

The lessons learned discussed in Sections VILA, VI.B and
VI.C are within the context of the considered program,
whereas the lessons of Sections VI.D and VLE provide
insights related to the organizational structure of our client.

During our involvement in the program, and prior to
conducting the analysis for this paper, we were not fully aware
of this distinction between program-level problems and
problems rooted in the organization of our client. If we had
been, our focus and efforts might have been prioritized
differently. It is important to note that requesting
organizational changes often exceeds the scope of influence
of a software team or a software company, even with the
software company represented by senior management, which
was the case for us. In retrospect, perhaps we should have
more readily accepted these organizational characteristics as
discussed in the end of Section VLE. Our efforts would
probably have been better concentrated on addressing
program-level problems. It is important to emphasize that
Mjelner is not a management consultancy company; it is a
software company. Clients seeking advice on organizational
changes, typically coupled with strategy, are better served by
a management consultancy company.

As outlined in Section V, during the timeframe under
consideration, our client engaged with a prominent
international management consultancy company to develop a
new digitalization strategy. While we were somewhat
involved in this initiative, we should have actively sought
greater influence to contribute towards shaping a new and
improved company organization.

Additionally, our approach to the problems with the
program organization (Section VI.B) and the overall company
organization should have been different. Specifically, in terms
of the program organization, we failed to explicitly
communicate to our client the distance between the business
divisions and the development teams, and that having the CX
department between them was a fundamental problem.
Similarly, in the context of overall company reorganization,
we held back from clearly and unambiguously stating the
problems we saw. This reluctance was rooted in our concern
about how such feedback might be received, fearing that such
communication could worsen our situation within the
program.

The communication problems we encountered were in fact
with different stakeholders and we had an awareness of the
presence of the various stakeholders, which is evident
throughout our reflections in the five lessons learned.
Stakeholders differ in terms of their power, influence and
interests [25] and they can impact the execution or termination
of a project [26,27]. Nonetheless, our stakeholder awareness
was not explicated sufficiently through a structured
stakeholder mapping process, such as positioning the
stakeholders within a 2x2 matrix based on their influencing
ability (the capacity to collaborate or pose a threat to the
program) [28,29,30]. This would have given us the

308

opportunity to align the stakeholder landscape and
management of those by adapting our communication
approach about requirements better with respect to the
stakeholders.

Our communication approach and how we met the client
and addressed requirements did not properly take into account
the client’s digital maturity level [31], as discussed in Section
VLA. Indirectly, we assumed a higher digital maturity level of
our client when considering the ambitious scope of the
program. However, throughout the course of the program, we
realized that our client was at a lower digital maturity level,
while we, in fact, communicated about requirements fitted for
a higher digital maturity level. Inevitably, this left a gap that
fostered misalignment and misunderstanding about
requirements in our communication approach.

This paper serves as an extensive retrospective analysis.
By reflecting on the program under consideration, we have
identified areas for improvement. The lessons learned hold
immediate value for us and will influence our approach in
future projects and programs. We are actively implementing
these insights with other clients. A more general (and obvious)
lesson is that it is the difficult projects that you can learn the
most from. The paper [32] is about a project, also difficult, we
did at Mjelner about 10 years ago. The writing of [32] and the
lessons identified there helped us to improve our ways of
working with requirements which we have benefited from
since.

In essence, this paper functions as a Problem Statement,
inherently speculative. While the outcomes of different
actions in the program remain unknown, we believe that
prioritizing communication on requirements and the
importance of proper requirements engineering, as
highlighted in the lessons, would likely have alleviated some
of the problems we have encountered.

A final note: This paper focusses on problems in the
program under discussion. In spite of these problems, the
program did complete by the end of 2023, from a development
and economic perspective; workarounds were found, and
useful features have been delivered and serve a purpose for
our client’s customers.

REFERENCES

(1

S. Lauesen, Software Requirements - Styles and Techniques, Addison
Wesley, 2004.

PRINCE2 — Managing Successful Projects with PRINCE2, Axelos,
2017.

K. Schwaber, J. Sutherland, “The Scrum Guide — The Definitive Guide
to Scrum: The Rules of the Game,”
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-
US.pdf.

P. Rayner, The Eventstorming Handbook — Unlocking Creativity,
Collaboration, and Communication for Your Teams, leanpub.com,
2022.

Event Modeling: https://eventmodeling.org/

[2]

Bl

[4]

[5]
[6]

M. Jackson, Problem Frames — Analyzing and Structuring Software
Development Problems, Addison Wesley, 2001.

[71 R.J. Wieringa, Design Methods for Reactive Systems — Yourdon,
Statemate, and the UML, Morgan Kaufmann, 2003.

P. Clements, R. Kazman, M. Klein, Evaluating Software Architectures
— Methods and Case Studies, Addison Wesley, 2002.

SAFe — Scaled Agile Framework https://scaledagileframework.com/

(8]
]

[10]
(1]
[12]

[13]

[14]

[15]

[1e]

[17]

[18]

[19]

[20]

[21]

H. Sharp, Y. Rogers, J. Preece, Interaction Design, John Wiley & Sons,
2007.

J. Keyton, Communication and Organizational Culture: A Key to
Understanding Work Experiences. Sage Publications, 2010.

J.T. Karlsen, "Project Stakeholder Management,"
Management Journal 14.4 (2002): 19-24.

E. Bjarnason, K. Wnuk, B. Regnell. "Requirements are Slipping
Through the Gaps—A Case Study on Causes & Effects of
Communication Gaps in Large-scale Software Development,", 19th
IEEE International Requirements Engineering Conference (RE11),
Trento, Italy,2011

T. Ambreen, I. Naveed, U. Muhammad, N. Mahmood, "Empirical
Research in Requirements Engineering: Trends and Opportunities,"
Requirements Engineering 23, no. 1 (2018/03/01 2018): 63-95.

A. van Lamsweerde, "Requirements Engineering in the Year 00: A
Research Perspective," Proceedings of the 22nd international
conference on Software engineering, Limerick, Ireland, Association for
Computing Machinery, 2000.

Engineering

T. Shah, S.V. Patel. "A Review of Requirement Engineering Issues and
Challenges in Various Software Development Methods," International
Journal of Computer Applications 99, no. 15 (2014).

G. Liebel, M. Tichy, E. Knauss, O. Ljungkrantz, G. Stieglbauer.

"Organisation and Communication Problems in Automotive
Requirements Engineering," Requirements Engineering 23 (2018).

J. Coughlan, R.D. Macredie. "Effective Communication in
Requirements Elicitation: A Comparison of Methodologies,"

Requirements Engineering 7, no. 2 (2002/06/01, 2002).

R. Kasauli, E. Knauss, J. Horkoff, G. Liebel, F. G. de Oliveira Neto,
"Requirements Engineering Challenges and Practices in Large-Scale
Agile System Development," Journal of Systems and Software 172
(2021/02/01/,2021): 110851.

N. Ali, R. Lai. "Requirements Engineering in Global Software
Development: A Survey Study from the Perspectives of Stakeholders,"
J. Softw. 13, no. 10 (2018).

W. Maalej, Z. Kurtanovi¢, A. Felfernig. "What Stakeholders Need to
Know About Requirements," 4" IEEE International Workshop on
Empirical Requirements Engineering (EmpiRE) at 22nd IEEE

309

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

International ~ Requirements
Karlskrona, Sweden, 2014.

C. Bumnay, 1. J. Jureta, S. Faulkner. "What Stakeholders Will or Will
Not Say: A Theoretical and Empirical Study of Topic Importance in
Requirements Engineering Elicitation Interviews," Information
Systems 46 (2014/12/01/ 2014).

B. Davey, K.R Parker. "Requirements Elicitation Problems: A
Literature Analysis," Issues in Informing Science and Information
Technology 12 (2015).

J.B. Jorgensen, H.L. Christensen, S.T. Hansen, B.B. Nyeng, “Effective
communication about software in a traditional industrial company,”
44th International Conference on Software Engineering (ICSE2022),
5th International Workshop on Software-Intensive Business, Pittsburg,
Pennsylvania, USA. IEEE, 2022.

PMI. To the Project Management Body of Knowledge (Pmbok®
Guide)-Fifth Edition, 2013.

P. Eskerod, M. Huemann, C. Ringhofer. "Stakeholder Inclusiveness:
Enriching Project Management with General Stakeholder Theory,"
Project Management Journal 46, no. 6 (2015).

Engineering Conference (RE14),

P. Eskerod, A.L. Jepsen, Project Stakeholder Management, Routledge,
2016.

R.E. Freeman, Strategic Management: A Stakeholder Approach,
Cambridge University Press, 2010.

M.J. Polonsky, D. Scott. "An Empirical Examination of the
Stakeholder Strategy Matrix," European Journal of Marketing 39, no.
9/10 (2005).

G.T. Savage, T.W. Nix, C.J. Whitehead, J.D. Blair, "Strategies for
Assessing and Managing Organizational Stakeholders," Academy of
Management Perspectives 5, no. 2 (1991).

G. C. Kane, D. Palmer, A. N. Phillips, D. Kiron, and N. Buckley,
“Achieving Digital Maturity” MIT Sloan Management Review and
Deloitte University Press, July 2017.

M. Holmegaard, J.B. Jorgensen, M.S. Loft, M.S. Stissing,
"Requirements Problems in the Development of a New User Interface
for Healthcare Equipment," 23rd IEEE International Requirements
Engineering Conference (RE15), Ottawa, Ontario, Canada, 2015.

