

TechDebt @ ICSE 2025, Extended Abstract

 Experiences with Technical Debt and its Root

Causes in a Merged Industrial Company

Magnus Drewsen Jørgensen

Mjølner Informatics A/S

Aarhus, Denmark

mdj@mjolner.dk

Morten Jokumsen

Mjølner Informatics A/S

Aarhus, Denmark

mjo@mjolner.dk

Nina Wiborg Mølgaard

Mjølner Informatics A/S

Aarhus, Denmark

nwm@mjolner.dk

Jens Bæk Jørgensen

Mjølner Informatics A/S

Aarhus, Denmark

jbj@mjolner.dk

Nina Wiborg Mølgaard

Mjølner Informatics A/S

Aarhus, Denmark

nwm@mjolner.dk

Henrik Bærbak Christensen

Aarhus University

Aarhus, Denmark

hbc@cs.au.dk

Abstract—Technical Debt (TD) is crucial to address in

industrial software development. We have described and

analysed TD within an industrial company that is the

result of mergers and acquisitions of several other

companies. Our results are (1) first-hand reports of TD

directly from developers and software architects, (2) a

categorization of various types of TD in architectural

anti-patterns, and (3) an identification and discussion of

possible root causes of the TD.

Keywords—technical debt, organization, human

factors, architecture, communication, cooperation

INTRODUCTION

We have examined Technical Debt (TD) at a large
industrial company which has thousands of employees and
serves in the magnitude of one million customers. The
company sells subscriptions within the utility sector, like
heating, gas, oil, electricity or similar. The company is only a
few years old, and it is the result of mergers and acquisitions
of many companies. To safeguard confidentiality, we keep the
company as well as the type of utility supplied anonymous.
This company will be referred to as UtilComp.

We report on experiences from a two-year period, from

summer 2022 to summer 2024. Within this timeframe,

approximately 80-100 people have worked on the software

development under consideration, with an estimated total

effort of 250,000-300,000 person hours. We have

participated in developer and architect roles, and we have

worked on two different but related projects:

(1) The Customer Entity Management project: A

project made to address some of UtilComp’s challenges

related to handling scattered Customer Entity records from

multiple external source systems of the merged companies.

The main goal was to make single access point integrations

from ‘Source data holding systems’ to self-service- and sales-

platforms within UtilComp.

(2) The Better Digital Channels project: A project made

to enhance the digital channels facilitating online interaction

between UtilComp and its customers. The main goal was to

deliver: (i) a new and improved web page, where UtilComp

could sell subscriptions, (ii) a new and improved self-service

web solution where UtilComp’s existing customers could get

an overview of their engagement, pay bills etc., and (iii) a

brand-new app providing various overviews to customers.

The Better Digital Channels project was highly dependent

on deliveries from the Customer Entity Management project,

so communication between the two projects was necessary.

Despite their dependency, the two project were in different

parts of the organization, see Figure 1.

METHOD

We report our experiences. We have not done a case study

or controlled experiment with a hypothesis and systematic

data gathering to validate or invalidate it. We have carried out

work, and we present a retrospective analysis of what was

done and what was observed. Further, we rely on the results

Figure 1: Organizational diagram of UtilComp’s upper-

level management layers

mailto:mdj@mjolner.dk
mailto:mjo@mjolner.dk
mailto:nwm@mjolner.dk
mailto:jbj@mjolner.dk
mailto:nwm@mjolner.dk
mailto:hbc@cs.au.dk

from an ATAM analysis of UtilComp’s software architecture

that we have previously carried out.

RESULTS

We have identified examples of different types of TD that

were found in both projects, and classified these in

architectural anti-patterns.

Figure 2 shows an example of a relevant architecture

extract for the Customer Entity Management project. The

figure is there to give an overall impression; the details in the

figure are not further described, due to limited space.

Major anti-patterns that we have seen in both projects are:

(1) Cyclic dependencies; (2) too many technologies; (3) high

coupling to external systems.

Examining how anti-patterns arose within the projects’

system architectures, and examining UtilComp’s

organization and software setup, we have made qualified

conjectures of root causes within the UtilComp setup causing

these anti-patterns. The major root causes conjectured are:

(1) Organizational distance between software projects

within UtilComp, causing insufficient or no communication

channels between interrelated projects.

(2) Unclear roles and responsibilities between system

architects, leading to unclear responsibilities of systems and

duplicated functionality across systems.

(3) Missing or unclear diagramming and

documentation, causing misalignment between systems.

(4) Undesired side-effects of Scrum, creating an emphasis

on single team-tasks and short-term planning, rather than

communication between teams and long-term planning.

(5) Low level of digital maturity in the quite young

company UtilComp, where the significance of software

development and avoiding anti-patterns like those mentioned

above were not well recognized (and where we as software

professionals did not argue the case well enough).

(6) Being a result of many mergers of companies,

UtilComp must consolidate software and data from each of

the merged companies, affecting the overall architecture.

In Figure 3, we have sketched conjectures about possible

relations between the Cyclic dependencies anti-pattern and

its possible root causes.

CONCLUSION AND OUTLOOK

We have first-hand observed and described examples of

TD from a major industrial project and classified TD types in

anti-patterns, and considered root causes. Our work would

benefit from a careful analysis of its relation to the already

established body of knowledge about TD, as exemplified by

the reference list.

REFERENCES

[1] T. Sharma and D. Spinellis, “A Survey on Software

Smells,” Journal of Systems and Software, vol. 138, pp.

158-173, 2018.

[2] P. Avgeriou, P. Kruchten, I. Ozkaya and C. Seaman,

“Managing Technical Debt in Software Engineering,” in

Technical report, Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, Dagstuhl, Germany, Rep. Dagstuhl

Seminar 16162, 2016, 2016.

[3] R. Verdecchia, P. Kruchten and P. Lago, “Architectural

Technical Debt: A Grounded Theory,” in Software

Architecture: 14th European Conference, ECSA 2020,

L'Aquila, Italy, September 14–18, 2020, Proceedings,

2020.

Figure 3: Cyclic dependencies – cause and effect

Figure 2: Customer Entity Management (CEM) architecture relevant for our analysis

